this is prove that question
plzz answer it
Attachments:
Answers
Answered by
1
To Prove: sin⁴A + cos⁴A = 1 - 2sin²A × cos²A
Solution: sin⁴A + cos⁴A can be expressed as;
α² + β² = (α + β)² - 2αβ
(sin²A)² + (cos²A)² = (sin²A + cos²A)² - 2(sin²A)(cos²A)
(sin²A)² + (cos²A)² = (1)² - 2(sin²A)(cos²A)
(sin²A)² + (cos²A)² = 1 - 2 × sin²A × cos²A
Hence Proved.
Identities used in the Solution:
α² + β² = (α + β)² - 2αβ
sin²θ + cos²θ = 1
**plzz mark my answer as brainliest**
Answered by
0
Answer:
your answer attached in the photo
Attachments:
Similar questions