Math, asked by Rushikrsingh, 5 months ago

This question is from Linear Equation . Solve it .​

Attachments:

Answers

Answered by Arceus02
1

Given:

  •  \sf \:  \dfrac{3}{4} (7x - 1) -  \bigg \{2x -  \dfrac{(1 - x)}{2}  \bigg \} = x +  \dfrac{3}{2}

To find:-

  • The value of x

Answer:-

Given that,

 \sf \:  \dfrac{3}{4} (7x - 1) -  \bigg \{2x -  \dfrac{(1 - x)}{2}  \bigg \} = x +  \dfrac{3}{2}

  \sf \longrightarrow\:  \dfrac{3(7x - 1)}{4}  -  \bigg \{ \dfrac{2(2x) - (1 - x)}{2}  \bigg \} = x +  \dfrac{3}{2}

  \sf \longrightarrow\:  \dfrac{21x - 3}{4}  -  \bigg \{ \dfrac{4x - (1 - x)}{2}  \bigg \} = x +  \dfrac{3}{2}

  \sf \longrightarrow\:  \dfrac{21x - 3}{4}  -  \bigg \{ \dfrac{4x - 1 + x}{2}  \bigg \} = x +  \dfrac{3}{2}

  \sf \longrightarrow\:  \dfrac{21x - 3}{4}  -  \bigg \{ \dfrac{5x - 1}{2}  \bigg \} = x +  \dfrac{3}{2}

  \sf \longrightarrow\:  \dfrac{21x - 3 - 2 \{5x - 1 \}}{4}   = x +  \dfrac{3}{2}

  \sf \longrightarrow\:  \dfrac{21x - 3 - 10x + 2}{4}   = x +  \dfrac{3}{2}

  \sf \longrightarrow\:  \dfrac{11x - 1}{4}   = x +  \dfrac{3}{2}

  \sf \longrightarrow\:  \dfrac{11x }{4} -  \dfrac{1}{4}    = x +  \dfrac{3}{2}

  \sf \longrightarrow\:  \dfrac{11x }{4} - x     =   \dfrac{3}{2}  +  \dfrac{1}{4}

  \sf \longrightarrow\:  \dfrac{11x  - 4x}{4}     =    \dfrac{2(3) + 1}{4}

  \sf \longrightarrow\:  \dfrac{7x}{4}     =    \dfrac{7}{4}

\sf \longrightarrow x =  \dfrac{7}{4}  \times  \dfrac{4}{7}

  \longrightarrow \underline{ \underline{ \sf  { \green{x = 1}}}}

Similar questions