Math, asked by amuthapranav3, 1 year ago

THREE ANGLES OF A QUADRILATERAL ARE IN THE RATIO 3 : 5 : 7. THE DIFFERENCE OF THE LEAST AND THE GREATEST OF THESE ANGLES IS 76 DEGREE. FIND ALL FOUR ANGLES OF THE OUADRILATERAL​

Answers

Answered by Anonymous
25

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Assumption

\textbf{\underline{Common\;Ratio\;be\;p}}

Hence,

\textbf{\underline{Ratio\;are\;3p,5p\;and\;7p}}

Now,

\textbf{\underline{Largest\;angle=7p}}

Also

\textbf{\underline{Smallest\;angle=5p}}

It is given that difference of the least and greatest of these angles is 76

{\textbf{\boxed{\bigstar{{Hence\;Equation}}}}}

7p - 3p = 76

4p = 76

\tt{\rightarrow p=\dfrac{76}{4}}

p = 19

\textbf{\underline{Hence\;Three\;angles\;are:-}}

3p = 3(19) = 57

5p = 5(19) = 95

7p = 7(19) = 133

{\boxed{\sf\:{Combined\;sum\;of\;angles\;of\;quadrilateral=360}}}

{\boxed{\sf\:{So\;Fourth\;Angle}}}

= 360 - ( 57 + 95 + 133 )

= 360 - ( 285 )

= 75

\textbf{\underline{4\;angles\;are:-}}

\Large{\boxed{\sf\:{57, 75 ,95,133}}}

Answered by CHOCHO1234
13
Let take ratio as 3x 5x 7x
3x+5x+7x+75 = 360
15x = 360 - 75
X = 285/15
X = 19
3x= 57
5x= 95
7x= 113

The angles of a quadrilateral is 19 , 57 , 95 , 113
Similar questions