Three consecutive whole numbers are such that if they be divided by 5, 3, and 4 respectively the sum of the quotients is 40. Find the numbers
Answers
Answered by
4
Let the consecutive numbers be x , x+1, x+2According to the questionx/5 + (x+1)/3 + (x+2)/4 = 40
⇒ [12x+ 20(x+1) + 15(x+2)]/60 = 40
⇒ [12x + 20x + 20 + 15x + 30]/60 = 40
⇒ [47x + 50]/60 = 40
⇒ 47x + 50 = 40 × 60
⇒ 47x + 50 = 2400
⇒ 47x = 2400 - 50
⇒ 47x = 2350
⇒ x = 2350/47
∴ x = 50
∴ The numbers are x= 50, x+1 = 51, x+2 = 52i,e. 50,51,52
⇒ [12x+ 20(x+1) + 15(x+2)]/60 = 40
⇒ [12x + 20x + 20 + 15x + 30]/60 = 40
⇒ [47x + 50]/60 = 40
⇒ 47x + 50 = 40 × 60
⇒ 47x + 50 = 2400
⇒ 47x = 2400 - 50
⇒ 47x = 2350
⇒ x = 2350/47
∴ x = 50
∴ The numbers are x= 50, x+1 = 51, x+2 = 52i,e. 50,51,52
Gurveer123:
Thanks a lot ☺
Answered by
0
x/5 + x+1/5 + x+2/5 = 40-----------------> 12x+20x+15x+20+30=2400
47x + 50 = 2400------> x = 2350/47
x=50, x+1=51, x+2=52.
Similar questions