Physics, asked by alexjoeananth53, 3 months ago

Three masses 3 kg, 4 kg and 5 kg are located at the corners of an equilateral triangle
of side 1m. Locate the centre of mass of the system.
please explain step by step

Answers

Answered by Anonymous
25

\purple{\underline \bold{Given :}}

\begin{gathered} \\ \tt: \implies mass \: on \: vertex \: a \:  = 3 \: kg \end{gathered}

\begin{gathered} \\ \tt: \implies mass \: on \: vertex \: 	B \:  = 4 \: kg \end{gathered}

\begin{gathered} \\ \tt: \implies mass \: on \: vertex \: C	\:  = 5 \: kg \end{gathered}

\blue{\underline \bold{★ Finding  \: \:  B \:  co - ordinate \:  of \:  triangle :}}

\begin{gathered} \\ \tt: \implies  {x}^{2}   =  \:  {1}^{2} -  {(0.5)}^{2}  \end{gathered}

\begin{gathered} \\ \tt: \implies  {x}^{2}   =  \:  1  - 0.25 \end{gathered}

\begin{gathered} \\ \tt: \implies  {x}^{2}   =  \: 0.75 \end{gathered}

\begin{gathered} \\ \tt: \implies  x \:  =  \sqrt{0.75} \end{gathered}

\begin{gathered} \\ \tt: \implies  x \:  =  0.86\end{gathered}

\pink{\underline \bold{★ Now  \: \:Using  :}}

\begin{gathered} \\ \tt: \implies   x_{m}  =  \frac{m_{1}r_{1} + m_{2} r_{2}+ m_{3}r_{3}}{m_{1} + m_{2} + m_{3}} \end{gathered}

\begin{gathered} \\ \tt: \implies   x_{m}  =   \frac{3(0) + 4(1) + 5(0.5)}{3 + 4 + 5}  \end{gathered}

\begin{gathered} \\ \tt: \implies   x_{m}  =    \frac{6.5}{12}   \end{gathered}

\green{\underline \bold{★ Now  \: \:Using  :}}

\begin{gathered} \\ \tt: \implies   y_{m}  =  \frac{m_{1}y_{1} + m_{2} y_{2}+ m_{3}y_{3}}{m_{1} + m_{2} + m_{3}} \end{gathered}

\begin{gathered} \\ \tt: \implies   y_{m}  =    \frac{4(0) + 3(0) + 5(0.86)}{4 + 3 + 5}   \end{gathered}

\begin{gathered} \\ \tt: \implies   y_{m}  =  \frac{4.3}{12}   \end{gathered}

\orange{\underline \bold{★  \: COM \: \:  : \:  \: ( \frac{6.5}{12} ,\frac{4.3}{12}  )}}

Answered by RISH4BH
15

\large{\red{\frak{ Given}}}\begin{cases}\textsf{ Three masses of 3kg , 4 kg and 5kg are on the corners of the triangle. }\\\textsf{ The side of the equilateral triangle is 1m. }\end{cases}

\large{\red{\frak{ To \ Find }}}\begin{cases}\textsf{The coordinates of the centre of mass .}\end{cases}

Here we need to find the coordinates of the centre of mass of the system . There are masses of 3kg , 4kg and 5kg at the corners of the triangle and the side of the triangle is 1m .

So lets make a graph of the system, where one of the vertex of the triangle is at the origin that is (0,0) . And hence the second coordinate is (1,0 ). The coordinates of the midpoint of this line will be (0.5,0) . Let's find out the coordinates of the third coordinate of triangle using the Pythagoras Theorem. For its steps kindly refer to the attachment. Hence we see that the ,

\sf:\implies\boxed{ \green{\sf Third \ Coordinate \ = \ \bigg(\dfrac{1}{2},\dfrac{\sqrt3}{2}\bigg) }}

\purple{\bigstar}\underline{\boldsymbol{ According\ to\ the \ Question :-}}

\sf:\implies \pink{ ( x , y )=\bigg( \dfrac{mx_1  + mx_2+mx_3}{m_1+m_2+m_3} , \dfrac{my_1  + my_2+my_3}{m_1+m_2+m_3}  \bigg) }\\\\\sf:\implies (x,y)= \bigg( \dfrac{ (3)(0)+(4)(1)+(5)(0.5)}{3+4+5},\dfrac{(3)(0)+(4)(0)+(5)\bigg(\dfrac{\sqrt3}{2}\bigg) }{3+4+5}\bigg)\\\\\sf:\implies (x,y)=\bigg( \dfrac{6.5}{12},\dfrac{5\sqrt3}{24}\bigg)\\\\\sf:\implies\underset{\blue{\sf Required\ coordinate }}{\underbrace{ \boxed{\pink{\frak {(x,y)= (0.54,0.36)}}}}}

Attachments:
Similar questions