Three positive integers a1,a2,a3 are in AP such that a1+a2+a3=33 and a1*a2*a3=1155.Find the integers a1,a2,a3.
Answers
Answered by
69
Given
three positive integers a1, a2,a3, in AP
a1*a2*a3*=1155\
=> a1+a2+a3=33..............................eq1
according to AP
2[a2]=a1+a3
2[a2]=33-a2 [from 1]
3[a2]=33
a2=11----------------------eq2
a1*a2*a3=1155
a1*a3=1155/11
a1*a3=105..........eq3
from eq 1
a1+a2+a3=33
a1+a3=22
=> a1=22-a3
a1*a3=105
[22-a3] a3=105
22a3-[a3]square=105
[a3]square -22a3 +105=0
by factorizing we get
a3=15 or 7............eq 4
we have a3 and a2
we can find rremaining a1
we get a1=7 or 15
three positive integers a1, a2,a3, in AP
a1*a2*a3*=1155\
=> a1+a2+a3=33..............................eq1
according to AP
2[a2]=a1+a3
2[a2]=33-a2 [from 1]
3[a2]=33
a2=11----------------------eq2
a1*a2*a3=1155
a1*a3=1155/11
a1*a3=105..........eq3
from eq 1
a1+a2+a3=33
a1+a3=22
=> a1=22-a3
a1*a3=105
[22-a3] a3=105
22a3-[a3]square=105
[a3]square -22a3 +105=0
by factorizing we get
a3=15 or 7............eq 4
we have a3 and a2
we can find rremaining a1
we get a1=7 or 15
Answered by
5
Answer:
Step-by-step explanation:
Let us consider the three positive integer in AP are
a k d 1 = - , a k 2 = , a k d 3 = +
Given, a a a 1 2 3 + + = 33
Þ k d k k d - + + + = 33
Þ 3 33 k = Þ k = 11 (1)
and a a a 1 2 3 ´ ´ = 1155
Þ( ) ( ) 11 11 11 1155 - ´ ´ + = d d
Þ ( )( ) 11 11 1155
11
- + = d d
(1)
Þ 121 105 2
- = d
\ d
2
= Þ 16 d = ± 4
\ k = 11, d = 4 or k = 11, d = - 4
When k = 11 and d = 4
a k d 1 = - = - = 11 4 7
a k d 2 = = = 11,
a k d 3 = + = + = 11 4 15,
When k = 11and d = - 4 (1)
or a k d 1 = - = + = 11 4 15
a k 2 = = 11 or a k d 3 = + = - = 11 4 7
Therefore, the numbers are 7, 11, 15 or 15, 11, 7.
Similar questions