Math, asked by Lalhriattluangi8541, 1 year ago

Three vector abc satisfy the condition a + b + c is equal to zero evaluate the quantity musical to a into b

Answers

Answered by Swarup1998
3

Vector Analysis

Complete question: Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition \vec{a}+\vec{b}+\vec{c}=\vec{0}. Evaluate the quantity \mu=\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}, if |\vec{a}|=1, |\vec{b}|=4 and |\vec{c}|=2.

To remember:

  • We must remember that vector dot product is commutative,
  • \quad\quadi.e. \vec{a}.\vec{b}=\vec{b}.\vec{a}
  • And: \vec{a}.\vec{a}=|\vec{a}|^{2}

Solution:

Given, \vec{a}+\vec{b}+\vec{c}=\vec{0}\quad...(1)

Taking dot product of \vec{a} to both sides of (1), we get

\quad \vec{a}.\vec{a}+\vec{a}.\vec{b}+\vec{c}.\vec{a}=0

\Rightarrow \vec{a}.\vec{b}+\vec{c}.\vec{a}=-\vec{a}.\vec{a}

\Rightarrow \vec{a}.\vec{b}+\vec{c}.\vec{a}=-|\vec{a}|^{2}

\Rightarrow \vec{a}.\vec{b}+\vec{c}.\vec{a}=-1^{2}

\Rightarrow \vec{a}.\vec{b}+\vec{c}.\vec{a}=-1\quad...(2)

Taking dot product of \vec{b} to both sides of (1), we get

\quad \vec{a}.\vec{b}+\vec{b}.\vec{b}+\vec{b}.\vec{c}=0

\Rightarrow \vec{a}.\vec{b}+\vec{b}.\vec{c}=-\vec{b}.\vec{b}

\Rightarrow \vec{a}.\vec{b}+\vec{b}.\vec{c}=-|\vec{b}|^{2}

\Rightarrow \vec{a}.\vec{b}+\vec{b}.\vec{c}=-4^{2}

\Rightarrow \vec{a}.\vec{b}+\vec{b}.\vec{c}=-16\quad...(3)

Taking dot product of \vec{c} to both sides of (1), we get

\quad \vec{c}.\vec{a}+\vec{b}.\vec{c}+\vec{c}.\vec{c}=0

\Rightarrow \vec{c}.\vec{a}+\vec{b}.\vec{c}=-\vec{c}.\vec{c}

\Rightarrow \vec{c}.\vec{a}+\vec{b}.\vec{c}=-|\vec{c}|^{2}

\Rightarrow \vec{c}.\vec{a}+\vec{b}.\vec{c}=-2^{2}

\Rightarrow \vec{c}.\vec{a}+\vec{b}.\vec{c}=-4\quad...(4)

Now, (2)+(3)+(4)\implies

\quad 2\:(\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a})=-1-16-4

\Rightarrow 2\:(\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a})=-21

\Rightarrow \boxed{\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}=-\frac{21}{2}}

Answer: \displaystyle \bold{\mu=-\frac{21}{2}}

Similar questions