Math, asked by nishant54321, 1 year ago

tignometry questions of class 12 ​

Attachments:

Answers

Answered by IamIronMan0
3

Answer:

We know

 \tan {}^{ - 1} (x)  +  \cot {}^{ - 1} (x)  =  \frac{\pi}{2}  \\  \\  \cot {}^{ - 1} (x)  =  \frac{\pi}{2}  -  \tan { }^{ - 1} (x)  \\  \\ let \:  \:  \: \tan { }^{ - 1} (x)   = y \\  \\ \cot { }^{ - 1} (x)   =  \frac{\pi}{2}  - y

Now put values in equation

 {y}^{2}  + ( \frac{\pi}{2}  - y) {}^{2}  =  \frac{5 {\pi}^{2} }{8}  \\  \\  {y}^{2}  +  {y}^{2}  +  \frac{ {\pi}^{2} }{4}  - \pi \: y =  \frac{5 {\pi}^{2} }{8}  \\  \\ 16 {y}^{2}  + 2 {\pi}^{2}  - 8\pi \: y = 5 {\pi}^{2}  \\  \\ 16 {y}^{2}  - 8\pi \: y - 3 {\pi}^{2}  = 0 \\  \\ y =  \frac{8\pi \pm \sqrt{64 {\pi}^{2}  + 4(16)(3 {\pi}^{2})  } }{32}  \\  \\ y =  { \frac{8\pi \pm16\pi}{32} } =   \frac{24\pi}{32}  \:  \: and \:  \:  \frac{ - 8\pi}{32}  \\  \\  \tan {}^{1} (x)  =  \frac{3\pi}{4}  \:  \: and \:  \:  \frac{ - \pi}{4}  \\  \\ x =  \tan( \frac{3\pi}{4} )  \: and \:  \:  { \tan( \frac{ - \pi}{4} ) } \\  \\ x =  - 1

Similar questions