Math, asked by viveksathyan7733, 1 year ago

Trigonometry : Reciprocal relations

Answers

Answered by Rituj1
6
sinx=1/cosecx
cosx=1/secx
tanx=1/cotx
cotx=1/tanx
cosecx=1/sinx
secx=1/cosx
Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
42

Required answer:-

Correct question :

• Explain in trigonometry : Reciprocal relations

Solution :

 1. \:  Since,  \: sin  \: A \:  =  \:  \dfrac{perpendicular}{hypotenuse} \: and \: cosec \: A \:  =  \:  \dfrac{hypotenuse}{perpendicular}  \\→ \: sin \: A \: and \: cosec \: A \: are \: reciprocal \: of \: each \: other. \\ ∴ \: sin \: A \:  =  \:  \frac{1}{cosec \: A}  \: and \: cosec \: A \:  =  \:  \frac{1}{sinA}  \\ Similarly, \: cosA \:  =  \:  \frac{1}{secA} \: \: and \: secA \:  =  \:  \frac{1}{cosA}  \\ tan \: A \: =   \frac{1}{cot \:A}  \: and \: cot \: A \:  =  \:  \frac{1}{tanA}  \\

Since,  \:  \dfrac{sin A}{cosA}  \:  =  \:  \frac{ \frac{perpendicular}{hypotenuse} }{ \frac{base}{hypotenuse} } \:  =  \:  \dfrac{perpendicular}{base}  \:  =  \: tan A\:  \\ ∴ \: tan \: A \:  =  \:  \frac{sinA}{cosA}  \: and \: cot \: A \:  =  \:  \frac{cosA}{sinA}

Similar questions