Math, asked by priyanshupal26, 1 year ago

twenty seven solid iron spheres, each of radius r and surface area S are melted to form a sphere with radius r' and surface area S'.find the radius r' of new sphere and ratio of S and S'.​

Answers

Answered by GalacticCluster
51

Answer:

(i) Radius of 1 solid iron sphere = r

\\

Volume of 1 solid iron sphere = \sf\dfrac{4}{3}\:\pi\:r^3

\\

Volume of 27 solid iron spheres = \sf{27\:\times}\sf\dfrac{4}{3}\:\pi\:r^3

\\

_________________________

Let the radius of the new sphere be x

\\

Volume of new solid iron sphere = \sf\dfrac{4}{3}\:\pi\:r^3

 \\  \sf \:  \frac{4}{3} \:  \pi \:  {r}^{3}  = 27 \times  \frac{4}{3}  \: \pi \:  {r}^{3}  \\  \\  \\  \implies \sf \:  {r}^{3}  = 27 \:  \:  {r}^{3}  \\  \\  \\  \implies \sf \blue{r = 3r} \\  \\

• Surface area of 1 solid iron sphere R = 4πr³

\\

Surface area of iron sphere of Radius r' = 4π (r)²

 \\  \sf \:  - 4\pi \: (3r) {}^{2}  - 36\pi \:  {r}^{2}  \\  \\  \\  \sf \:  \frac{S}{S'}  =  \frac{4 \: \pi \:  {r}^{3} }{36 \: \pi \:  {r}^{3} }  =  \frac{1}{9}  \\  \\  \\  \implies \sf \blue{1 \:  \colon \: 9} \\

Similar questions