Two projectiles are projected at angles ( pi / 4+theta) and pi/4+theta with the horizontal, where theta
Answers
solution:
from the compound angle formulae for the tangent function, we have:
tan(A+B)=tan(A)+tan(B)1−tan(A)tan(B)tan(A+B)=tan(A)+tan(B)1−tan(A)tan(B)
tan(A−B)=tan(A)−tan(B)1+tan(A)tan(B)tan(A−B)=tan(A)−tan(B)1+tan(A)tan(B)
Substituting A=π4⇒tan(A)=1A=π4⇒tan(A)=1
and B=θB=θ, we have:
X=tan(π4+θ)=1+tan(θ)1−tan(θ)X=tan(π4+θ)=1+tan(θ)1−tan(θ)
Y=tan(π4−θ)=1−tan(θ)1+tan(θ)Y=tan(π4−θ)=1−tan(θ)1+tan(θ)
Subtracting YY from XX, we have:
X−Y=1+tan(θ)1−tan(θ)−1−tan(θ)1+tan(θ)X−Y=1+tan(θ)1−tan(θ)−1−tan(θ)1+tan(θ)
We will now express the right side over a common denominator:
X−Y=1+tan(θ)1−tan(θ)×1+tan(θ)1+tan(θ)−1−tan(θ)1+tan(θ)×1−tan(θ)1−tan(θ)X−Y=1+tan(θ)1−tan(θ)×1+tan(θ)1+tan(θ)−1−tan(θ)1+tan(θ)×1−tan(θ)1−tan(θ)
=4tan(θ)1−tan2(θ)=4tan(θ)1−tan2(θ)
From the double angle formula for tan,
X−Y=2tan(2θ)
Step-by-step explanation:
sin(π/2+α)=cosα
sin(π/2-α)=cosα