Math, asked by spy51, 10 months ago

Two trains leave a railway station at same time. The first train travels towards west and second train towards north. The first train travels 5km/hr faster than the second train. If after two hours they are 50km. apart, find the average speed of each train​

Answers

Answered by Anonymous
271

\rule{200}{2}

\\

\Huge\bigstar\:\tt\underline\red{GIVEN}\\\\

\sf\orange{1st\:train\:travels\:towards\:west}

\sf\orange{2nd\:train\:travels\:towards\:north}

\small\sf\orange{1st\:train\:travels\:5km/hr\:faster\:than\:2nd\:train}

\sf\orange{After \:2\:hours\:they\:are\:50km}

\\

\rule{200}{2}

\\

\Huge\bigstar\:\tt\underline\red{TO\:FIND}\\\\

\sf\orange{Average\:speed\:of\:each\:train}

\\

\rule{200}{2}

\\

\Huge\bigstar\:\tt\underline\red{SOLUTION}\\\\

\huge\dagger\:\:\sf\underline\pink{Let}

\\

  • \sf\blue{Speed\:of\:slower\:train\:=\:x\:kmph}

\\

  • \sf\blue{Then\:speed\:of\:faster\:train\:=\:x+5 \:kmph}

\\

\sf\underline\gray{Distance\:=\:Speed\:×\:Time}

\\

\sf\underline\orange{Distance\: travelled\:by\:the\:1st\:train}:

\\

\Large\leadsto\:\:\: \: \sf \purple {2(x\:+\:5)}

\\

\Large\leadsto\:\:\: \: \sf \green {2x\:+\:10}

\\

\sf\underline\orange{Distance\: travelled\:by\:the\:2nd\:train}:

\\

\Large\leadsto\:\:\: \: \sf \purple {2.x \: = \: 2x}

\\

\bf\underline\red{By\: Pythagoras \: theorem}

\\

\Large\leadsto\:\:\: \: \sf \purple {(2x)^2  + (2x+10)^2 = 50^2}

\\

\Large\leadsto\:\:\: \: \sf \green {4x^2 + (4x^2 + 40x + 100) = 2500}

\\

\Large\leadsto\:\:\: \: \sf \purple {4x^2 +4x^2 + 40x + 100 = 2500}

\\

\Large\leadsto\:\:\: \: \sf \green {8x^2 + 40x - 2400 = 0}

\\

\Large\leadsto\:\:\: \: \sf \purple {x^2 + 5x - 300 = 0}

\\

\Large\leadsto\:\:\: \: \sf \green {x^2 + 20x - 15 - 300 = 0}

\\

\Large\leadsto\:\:\: \: \sf \purple {x(x+20)-15(x+20)= 0}

\\

\Large\leadsto\:\:\: \: \sf \green {(x+20)\:\:(x-15)=0}

\\

\Large\leadsto\:\:\: \: \sf \purple {x-15=0\:\:x+20=0}

\\

\Large\leadsto\:\:\: \: \sf \green {x=15 \:(or)\: -20}

\\

\sf\gray{But\:x\: can't\:be\: negative}

\\

\Large\dagger\:\sf\underline\red{Speed\:of\:the\:slower\:train}\:

\\

\Large\leadsto\:\:\: \: \sf \underline\purple {x\:=\:15\:kmph}

\\

\Large\dagger\:\sf\underline\red{Speed\:of\:the\:faster\:train}:

\\

\Large\leadsto\:\:\: \: \sf \green {x+5}

\\

\Large\leadsto\:\:\: \: \sf \purple {15+5}

\\

\Large\leadsto\:\:\: \: \sf \underline\purple {20kmph}

\\

\rule{200}{2}

Attachments:
Answered by TheMist
71

\huge \sf \color{purple}{\underline{\underline{Answer}}} :

Speed of first train is 20 Km/h and speed of 2nd train is 15 Km/h

\huge \sf \color{purple}{\underline{\underline{Solution}}}:

➣ Let the 2nd train travel at X km/h

➣Then, the speed of a train is (5 +x) Km/hour.

➣ let the two trains live from station M.

➣ Distance travelled by first train in 2 hours

\sf \boxed{\colorbox{skyblue}{Distance=speed×time}} \ \ \ \ \

\ \ \ \ \ \ \ \    = MA = 2(x+5) Km.

➣ Distance travelled by second train in 2 hours

 \ \ \ \ \ \ \ \  = MB = 2x Km

\sf \color{brown}{By \: Phythagoras \: theorem } AB²= MB²+MA²

⟹ 50²=(2(x+5)²+(2x)²

⟹ 2500 = (2x+10)² + 4x²

⟹8x² + 40x - 2400 = 0

⟹x² + 5x - 300 = 0

⟹x² + 20x -15x - 300 = 0

⟹x(x + 20) - 15(x + 20) = 0

⟹ (x + 20)(x -15) = 0

 \sf \boxed{\colorbox{lightgreen}{x=15 \: or \: -20}}

Taking x = 15 , the speed of second train is 15 Km/h and speed of first train is 20 Km/h

Similar questions