Math, asked by vermaritika605, 1 year ago

use diffrential to approximate √25.3

Answers

Answered by Sharad001
44

  \large  \underline{\underline{  \red{\mathfrak{Question}}}} :  -  \\   \rightarrow \sf{Use\: \green{ differential} \: \red{ to \: approximate} \:  \sqrt{25.3} } \\  \\ \large  \underline{ \underline{ \purple{\mathfrak{Answer}}}} :  -  \\ \\  \rightarrow \:  \red{ \boxed{\sqrt{25.3}  = 5.03}} \:  \\  \\  \large  \mathfrak{\underline{\underline{  \green{Step - }by -  \red{step} \:  \blue{explanation}}}} :  -  \\   \\ \green{ let \:  \: } \sf{ y \:  =  \sqrt{x} } \\ \sf{ \blue{ again \: let \:}  \: x = 25 \:  \:  \purple{and \:  \triangle x = 0.3}} \\  \\  \green{ \tt we \: have \:  }\\  \implies \sf{ y =  \sqrt{x} } \\  \\ \sf{ \red{ differentiate }\: with \: \green{ respect }\: to \: x} \\  \\  \implies \: \sf{ \pink{  \frac{dy}{dx} } =   \green{\frac{1}{2 \sqrt{x} } }}  \:  \:  \:  \:  \because \sf{ \:  \:  x = 25} \\  \\  \implies   \boxed{\sf{\:   \red{\frac{dy}{dx} } =   \blue{\frac{1}{10} }}} \\  \\ yet \\  \sf{ \implies \triangle  y =  \green{ \frac{dy}{dx}} \red{  \triangle x} }\\  \\  \implies \sf{  \triangle y =  \pink{ \frac{1}{10}} \green{  \times 0.3}} \\  \\  \implies \:  \boxed{  \blue{ \sf{\triangle y} = 0.03 }} \\   \bf{and \: also}  \\  \\ \sf{  \triangle y = \red{ f(x +  \triangle x)} - f(x)} \\  \\  \implies  \sf{0.03 =  \green{ \sqrt{x +  \triangle x} } -  \sqrt{x} } \\  \\  \implies \:  \green{ 0.03} =   \pink{\sqrt{25 + 0.3} }  - 5 \\  \\  \implies \:  \sqrt{25.3}  = \purple{ 0.03 + 5 }\\  \\  \implies \:   \boxed{ \red{\sqrt{25.3}  = 5.03}} \\  \\  \underline{\sf{ used \: formula}} :  -  \\  \\ \star \:  \sf{  \triangle y = \red{ f(x +  \triangle x)} - f(x)} \:  \\   \:  \\  \star \:  \sf{  \triangle  y =  \green{ \frac{dy}{dx}} \red{  \triangle x} } \:

\_________________/

#answerwithquality

#BAL

Similar questions