Use Euclid's division lemma to show that the square of any positive integer is either of the form 3m or 3m+1 for some integer m.
Answers
Answer:
Let 'a' be any positive integer.
On dividing it by 3 , let 'q' be the quotient and 'r' be the remainder.
Such that ,
a = 3q + r , where r = 0 ,1 , 2
When, r = 0
∴ a = 3q
When, r = 1
∴ a = 3q + 1
When, r = 2
∴ a = 3q + 2
When , a = 3q
On squaring both the sides,
When, a = 3q + 1
On squaring both the sides ,
When, a = 3q + 2
On squaring both the sides,
Therefore , the square of any positive integer is either of the form 3m or 3m+1.
Answer:
Let 'a' be any positive integer.
On dividing it by 3 , let 'q' be the quotient and 'r' be the remainder.
Such that ,
a = 3q + r , where r = 0 ,1 , 2
When, r = 0
∴ a = 3q
When, r = 1
∴ a = 3q + 1
When, r = 2
∴ a = 3q + 2
When , a = 3q
On squaring both the sides,
\begin{lgathered}{a}^{2} = 9 {q}^{2} \\ {a}^{2} = 3 \times (3 {q}^{2} ) \\ {a}^{2} = 3 \\ where \: m = 3 {q}^{2}\end{lgathered}a2=9q2a2=3×(3q2)a2=3wherem=3q2
When, a = 3q + 1
On squaring both the sides ,
\begin{lgathered}{a}^{2} = (3q + 1)^{2} \\ {a}^{2} = 9 {q}^{2} + 2 \times 3q \times 1 + {1}^{2} \\ {a}^{2} = 9 {q}^{2} + 6q + 1 \\ {a}^{2} = 3(3 {q}^{2} + 2q) + 1 \\ {a}^{2} = 3m + 1 \\ where \: m \: = 3 {q}^{2} + 2q\end{lgathered}a2=(3q+1)2a2=9q2+2×3q×1+12a2=9q2+6q+1a2=3(3q2+2q)+1a2=3m+1wherem=3q2+2q
When, a = 3q + 2
On squaring both the sides,
\begin{lgathered}{a}^{2} = (3q + 2)^{2} \\ {a}^{2} = 3 {q}^{2} + 2 \times 3q \times 2 + {2}^{2} \\ {a}^{2} = 9 {q}^{2} + 12q + 4 \\ {a}^{2} = (9 {q}^{2} + 12q + 3) + 1 \\ {a}^{2} = 3(3 {q}^{2} + 4q + 1) + 1 \\ {a}^{2} = 3m + 1 \\ where \: m \: = 3 {q}^{2} + 4q + 1\end{lgathered}a2=(3q+2)2a2=3q2+2×3q×2+22a2=9q2+12q+4a2=(9q2+12q+3)+1a2=3(3q2+4q+1)+1a2=3m+1wherem=3q2+4q+1
Therefore , the square of any positive integer is either of the form 3m or 3m+1.