Math, asked by unicornslayer999, 9 months ago

Use logarithmic differentiation to differentiate y = x\sqrt[3]{1 + x^{2}}.

Select one:
A \frac{dy}{dx} = x \sqrt[3]{1 + x^{2}}[\frac{1}{x} + \frac{2x}{3(1 + 2x^{2})}]
B \frac{dy}{dx} = x \sqrt[3]{1 + x^{2}}[\frac{1}{x} + \frac{2x}{3(1 + x^{2})}]
C \frac{dy}{dx} = x \sqrt[3]{1 + x^{2}}[\frac{1}{3x} + \frac{2x}{3(1 + x^{2})}]
D \frac{dy}{dx} = x \sqrt[3]{1 + 2x^{2}}[\frac{1}{x} + \frac{2x}{3(1 + x^{2})}]

Answers

Answered by MaheswariS
1

\textbf{Given:}

y=x\,\sqrt[3]{1 + x^2}

\textbf{To find:}

\dfrac{dy}{dx}

\textbf{Solution:}

\text{Consider,}

y=x\,\sqrt[3]{1 + x^2}

\implies\,y=x(1 + x^2)^{\frac{1}{3}}

\text{Take logarithm on bothsides, we get}

\log\,y=\log(x(1 + x^2)^{\frac{1}{3}})

\log\,y=\log\,x+\log(1 + x^2)^{\frac{1}{3}}

\log\,y=\log\,x+\frac{1}{3}\log(1 + x^2)

\text{Differentiate with respect to 'x'}

\dfrac{1}{y}\,\dfrac{dy}{dx}=\dfrac{1}{x}+\dfrac{1}{3}(\dfrac{2x}{1+x^2})

\dfrac{1}{y}\,\dfrac{dy}{dx}=\dfrac{1}{x}+\dfrac{2x}{3(1+x^2)}

\dfrac{dy}{dx}=y\,[\dfrac{1}{x}+\dfrac{2x}{3(1+x^2)}]

\implies\bf\dfrac{dy}{dx}=x\,\sqrt[3]{1 + x^2}\,[\dfrac{1}{x}+\dfrac{2x}{3(1+x^2)}]

\therefore\textbf{Option (B) is correct}

Answered by SagrikaLal
1

Answer:

Option b

Step-by-step explanation:

Similar questions