using Euclid's division of algorithm find:
1.). If 'd' is the hcf of 12576 and 4052, then find the value of x and y satisfying "d = 4052x +12576y."
Answers
Answered by
4
Hi there!
Given,
HCF (4052, 12576) = d
12576 = 3 × 4052 + 420
4052 = 420 × 9 + 272
420 = 272 × 1 + 148
272 = 148 × 1 + 124
148 = 124 × 1 + 24
124 = 5 × 24 + 4
24 = 6 × 4 + 0
So,
HCF = 4 (d)
4 = 124 - 5 × 24
= 124 - 5 × (148 - 124)
= 6 × 124 - 5 × 148
= 6 × (272 - 148) - 5 × 148
= 6 × 272 - 11 × 148
= 6 × 272 - 11 × (420 - 272
= 17 × 272 - 11 × 420
= 17 × (4052 - 420 × 9) - 11 × 420
= 17 × 4052 - 164 * 420
= 17 × 4052 - 164 × (12576 - 3 × 4052)
= 509 × 4052 - 164 × 12576
Hence,
x = 509 n' b = -164.
[ Thank you! for asking the question. ]
Hope it helps!
Given,
HCF (4052, 12576) = d
12576 = 3 × 4052 + 420
4052 = 420 × 9 + 272
420 = 272 × 1 + 148
272 = 148 × 1 + 124
148 = 124 × 1 + 24
124 = 5 × 24 + 4
24 = 6 × 4 + 0
So,
HCF = 4 (d)
4 = 124 - 5 × 24
= 124 - 5 × (148 - 124)
= 6 × 124 - 5 × 148
= 6 × (272 - 148) - 5 × 148
= 6 × 272 - 11 × 148
= 6 × 272 - 11 × (420 - 272
= 17 × 272 - 11 × 420
= 17 × (4052 - 420 × 9) - 11 × 420
= 17 × 4052 - 164 * 420
= 17 × 4052 - 164 × (12576 - 3 × 4052)
= 509 × 4052 - 164 × 12576
Hence,
x = 509 n' b = -164.
[ Thank you! for asking the question. ]
Hope it helps!
Similar questions