Math, asked by unknown2412, 1 year ago

using remainder theorem, factorize the following equation no 4


plzzz i need fast...

plzzz
i will mark brainliest​

Attachments:

brunoconti: resend for a full solution. solution ready
brunoconti: waiting
brunoconti: take away the answer of ritikdahiya

Answers

Answered by GodBrainly
29

 \bf R eminder  \ Theoram  \colon \\ \sf  If \:  a  \: polynomial \:  p(x) \:  is \:  divided  \\   \sf  by \:  the \:  binomial  \: x - 2,  \: the  \\  \sf reminder \:  can \:  be  \: determined \:  by  \\  \sf finding \:  p(2). \\  \\  \\  \mathfrak{ \huge \underline{ \underline{Solution \colon}}} \\ \\  \sf So,  \: looking  \: at \:  the \:  question,  \: if  \\  \sf p(x) = 4x^3  + 7x^2 - 36x - 63  \\  \sf was  \: divided  \: by  \: x - 2, the \\  \sf  remainder   \: can \:  be  \: determined \:  by  \\  \sf finding  \: p(2). \\  \\

 \sf p(x) = 4x { }^{3}  + 7x {}^{2} - 36x - 63 \\  \sf  p(2) = 4 {(2)}^{3} + 7 {(2)}^{2}    - 36x - 63 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   = 4 \times 8  +  7 \times 4 - 36 \times 2 - 63 \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  = 32 + 28 - 72 - 63 \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  =  - 75


unknown2412: excuse me.... the remainder should be zero...... and you did not factorize mate..... the answer is incorrect
Answered by siddhartharao77
10

Step-by-step explanation:

Given, f(x) = 4x³ + 7x² - 36x - 63

Factors of constant term are: ±1, ±3, ±7, ±9, ±21.

Putting x = -3, we have

f(-3) = 4(-3)³ + 7(-3)² - 36(-3) - 63

       = -108 + 63 + 108 - 63

       = 0.

Hence, (x + 3) is a factor of 4x³ + 7x² - 36x - 63.

Long Division Method:

x + 3) 4x³ + 7x² - 36x - 63 (4x² - 5x - 21

         4x³ + 12x²

         -----------------------------

                  -5x² - 36x - 63

                 -5x² - 15x

          ---------------------------

                            -21x - 63

                           -21x - 63

           -----------------------------

                                     0

∴ 4x³ + 7x² - 36x - 63 = (x + 3)(4x² - 5x - 21)

                                   = (x + 3)(4x² + 7x - 12x - 21)

                                   = (x + 3)[x(4x + 7) - 3(4x + 7)]

                                   = (x + 3)(x - 3)(4x + 7).

Hope it helps!


siddhartharao77: :)
Similar questions