using remainder theorem, factorize the following equation no 4
plzzz i need fast...
plzzz
i will mark brainliest
Answers
Step-by-step explanation:
Given, f(x) = 4x³ + 7x² - 36x - 63
Factors of constant term are: ±1, ±3, ±7, ±9, ±21.
Putting x = -3, we have
f(-3) = 4(-3)³ + 7(-3)² - 36(-3) - 63
= -108 + 63 + 108 - 63
= 0.
Hence, (x + 3) is a factor of 4x³ + 7x² - 36x - 63.
Long Division Method:
x + 3) 4x³ + 7x² - 36x - 63 (4x² - 5x - 21
4x³ + 12x²
-----------------------------
-5x² - 36x - 63
-5x² - 15x
---------------------------
-21x - 63
-21x - 63
-----------------------------
0
∴ 4x³ + 7x² - 36x - 63 = (x + 3)(4x² - 5x - 21)
= (x + 3)(4x² + 7x - 12x - 21)
= (x + 3)[x(4x + 7) - 3(4x + 7)]
= (x + 3)(x - 3)(4x + 7).
Hope it helps!