Math, asked by nirmaladatta100, 19 days ago

value of x please find​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

In triangle AOB,

 \sf \: \angle \: OAB \:  =  \: 35 \degree \:

and

 \sf \: OA = OB  \:  \:  \:  \:  [  \: radii \: of \:  circle  \: ] \\

\bf\implies \: \angle \: OAB \:  =  \: \angle \: OBA \\

[ Angle opposite to equal sides are equal ]

\bf\implies \: \angle \: OAB \:  =  \: \angle \: OBA  \:  =  \: 35 \degree\\

We know, sum of all interior angles of a triangle is supplementary.

So, using this property,

 \sf \:  \angle \: OAB \: +  \: \angle \: OBA  \:  +  \: \angle \:AOB =  \: 180 \degree\\

 \sf \:  35 \degree \: +  \: 35 \degree  \:  +  \: \angle \:AOB =  \: 180 \degree\\

 \sf \:  70 \degree  \:  +  \: \angle \:AOB =  \: 180 \degree\\

 \sf \:   \: \angle \:AOB =  \: 180 \degree - 70 \degree\\

\bf\implies \:  \: \angle \:AOB =  \: 110 \degree \\

Now,

\sf  \:reflex \angle \:AOB =  \:360 \degree  \:  -  \:\angle \:AOB  \\

\sf  \:reflex \angle \:AOB =  \:360 \degree  \:  -  \:110 \degree  \\

\bf\implies \:\:reflex \angle \:AOB =  \:250 \degree  \\

We know,

Angle subtended at the centre of a circle by an arc is double the angle subtended on the circumference of a circle by the same arc.

So, using this property, we get

\sf \:\:reflex \angle \:AOB = 2\angle \:ACB  \\

\sf \: 2x = 250 \degree

\bf\implies \:x \:  =  \: 125 \degree \\

\rule{190pt}{2pt}

Additional Information :-

1. Angle in same segment are equal.

2. Angle in semi-circle is 90°.

3. Equal chords subtends equal angles at the centre.

4. Equal chords are equidistant from center.

Similar questions