Math, asked by adityaraj1158, 9 months ago

Verify property :-
(x+y)+z=x+(y+z)
x= -2/17
y= 1/51
z= -13/7
In picture 5 ka 4 no

Attachments:

Answers

Answered by Brâiñlynêha
41

\huge\mathbb{SOLUTION:-}

\sf\bullet x=\dfrac{-2}{17}\\ \\ \sf\bullet y=\dfrac{1}{51}\\ \\ \sf\bullet z=\dfrac{-13}{7}

We have to verify

\boxed{\sf{(x+y)+z=x+(y+z)}}

Now

\sf\underline{\sf{\red{\:\:\:\:\:A.T.Q:-\:\:\:\:\:\:}}}

\sf\implies (x+y)+z= x+(y+z)\\ \\ \sf\implies \bigg(\dfrac{(-2)}{17}+\dfrac{1}{51}\bigg)+\dfrac{(-13)}{7}\:=\:\dfrac{(-2)}{17}+\bigg(\dfrac{1}{51}+\dfrac{(-13)}{7}\bigg)\\ \\ \\ \sf\bullet L.C.M\:of\:17\:and\:51 =51\\ \\ \\\sf\implies \bigg(\dfrac{-6+1}{51}\bigg)+\dfrac{(-13)}{7}\:\:=\:\:\dfrac{(-2)}{7}+\bigg(\dfrac{7-663)}{357}\bigg)\\ \\ \\  \sf\implies \bigg(\dfrac{-5}{51}\bigg)-\dfrac{13}{7}\:\:=\:\:\dfrac{-2}{17}+\bigg(\dfrac{-656}{357}\bigg)\\ \\ \\\sf\implies\bigg(\dfrac{-35-663}{357}\bigg)=\bigg(\dfrac{-42-656}{357}\bigg)\\ \\ \\ \sf\implies \dfrac{-698}{357}=\dfrac{-698}{357}

\sf\:\:\:L.H.S=\:R.H.S....\:\:\:(hence\: proved)


nirman95: LCM of 17 and 51 is 51 . Please check that part.
Answered by Anonymous
29

 \mid \overline\mathbf \red{given}

  • x=-2/17
  • y=1/51
  • z=-13/7

 \mathfrak \orange{according \: to \: que.}

(x + y) + z = x + (y + z)

putting \: the \: value

Now,

 (\frac { - 2}{17}  +  \frac{1}{51} ) +  \frac{ - 13}{7}  =  \frac{ - 2}{17}  + ( \frac{1}{51}  +  \frac{ - 13}{7} )

 \underline \mathbf{l.c.m \: of \: 17 \: and \: 51 \:  = 51}

 ( \frac{ - 6 + 1}{51} ) +   \frac{ - 13}{7}  =  \frac{ - 2}{17}  + ( \frac{7 - 663}{357} )

 \frac{  - 5}{51}  + \frac{ - 13}{7}  =   \frac{ - 2}{17}  +  \frac{ - 656}{357}

 \frac{ - 35 - 663}{357}  =  \frac{ - 42 - 656}{357}

 \frac{ - 698}{357}  =  \frac{ - 698}{357}

Hence, L.H.S=R.H.S

Similar questions