Math, asked by JENILGAJERA, 1 year ago

verify that x cube + y cube + z cube -3xyz = 1/2 (x+y+z) [(x-y)square + (y-z) square + (z-x)square ]

Answers

Answered by prithvithe11ofbk
98
here is your answer buddy, hope it helps you
Attachments:
Answered by aquialaska
39

Answer:

We have to verify:

x^3+y^3+z^3-3xyz=\frac{1}{2}(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)

Consider,

LHS = x³ + y³ + z³ - 3xyz

RHS

=\frac{1}{2}(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)

=\frac{1}{2}(x+y+z)(x^2+y^2-2xy+y^2+z^2-2yx+z^2+x^2-2zx)

=\frac{1}{2}(x+y+z)(x^2+x^2+y^2+y^2+z^2+z^2-2xy-2yx-2zx)

=\frac{1}{2}(x+y+z)(2x^2+2y^2+2z^2-2xy-2yx-2zx)

=\frac{1}{2}(x+y+z)\times2\times(x^2+y^2+z^2-xy-yx-zx)

=\frac{1}{2}\times2(x+y+z)(x^2+y^2+z^2-xy-yx-zx)

=(x+y+z)(x^2+y^2+z^2-xy-yx-zx)

using identity, (x + y + z)(x² + y² + z² - xy - yz - xz) = x³ + y³ + z³ -3xyz

=x^3+y^3+z^3-3xyz

LHS = RHS

Hence Verified.

Similar questions