(vii) (31) tan 3A = 3 tan A - tan³ A
/1 - 3 tan² A
Answers
To prove --->
tan3A = (3tanA - tan³A ) / ( 1 - 3tan²A )
Proof---> We have a formula
tan(A + B ) = (tanA + tanB ) / ( 1 - tanA tanB )
LHS = tan 3A
We can break 3A as ( 2A + A )
= tan ( 2A + A )
Now applying above formula we get
= ( tanA + tan2A ) / ( 1 - tanA tan2A )
We have another formula as follows
tan2A = 2tanA / ( 1 - tan²A ) , applying it here we get.
tanA + ( 2tanA / 1 - tan²A )
= ---------------------------------------
1 - tanA ( 2tanA / 1 - tan²A )
Taking ( 1 - tan²A ) as LCM , we get
{ tanA ( 1 - tan²A ) + 2tanA } / ( 1 - tan²A )
= ---------------------------------------------------------
{ 1 - tan²A - 2tan²A } / ( 1 - tan²A )
tanA - tan³A + 2 tanA
= ---------------------------------
1 - 3 tan²A
= ( 3 tanA - tan³A ) / ( 1 - 3 tan²A ) = RHS
Additional information--->
(1) Sin2A = 2SinA CosA
(2) Cos2A = 2Cos²A - 1
= 1 - 2 Sin²A
= Cos²A - Sin²A
(3) Sin2A = 2tanA / (1 + tan²A )
(4 ) Cos2A = ( 1 + tan²A ) / ( 1 - tan²A )
(5 ) Sin3A = 3SinA - 4Sin³A
( 6 ) Cos3A = 4Cos³A - 3CosA