Math, asked by Anonymous, 1 year ago

volume of two sphere are in the ratio of 27:64.what is the ratio of their surface areas

Answers

Answered by Rajdeep11111
69
Hope this will help u, champ!
Attachments:
Answered by wifilethbridge
11

Answer:

9:16

Step-by-step explanation:

Volume of sphere = \frac{4}{3} \pi r^{3}

Since we are given that volume of two sphere are in the ratio of 27:64.

\frac{\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi R^{3}}=\frac{27}{64}

\frac{r^{3}}{R^{3}}=\frac{27}{64}

\frac{r}{R}=\sqrt[3]{\frac{27}{64}}

\frac{r}{R}=\frac{3}{4}

Thus the ratio of the radii is 3:4

Let the ratio be x

So radii are 3x and 4x

Surface area of sphere = 4\pi x^{2}

Surface area of sphere of radius 3x= 4\pi (3x)^{2}

                                                          = 36\pi x^{2}

Surface area of sphere of radius 4x= 4\pi (4x)^{2}

                                                          = 64\pi x^{2}

Ratio of their surface area = \frac{36\pi x^{2}}{64\pi x^{2}}

                                           = \frac{36}{64}

                                           = \frac{9}{16}

Hence the ratio of their surface area is 9:16

                                             

Similar questions
Math, 1 year ago