Math, asked by sana8221, 1 year ago

Water flows at the rate of 5 m per min from a cylindrical pipe 8 mm in diameter. how long will it take to fill up a conical vessel whose radius is 12 cm and depth 35 cm?

Answers

Answered by AsmodAliMondal
4
I hope that it's yours answers...
Attachments:
Answered by mysticd
2

 Given \: diameter \:of \:the \: pipe = 8\: mm

 Radius \: of \:the \:pipe =\frac{diameter }{2} \\=  4 \:mm \\= \frac{4}{10} \: cm \\= \frac{2}{5} \:cm

 Speed \: of \:water = 5 \: m /min \\= 500 \: cm /min

 Volume \:of \:water \:that \: flows \: in \:1 \:min\\= \pi r^{2} h \\= \frac{22}{7} \times \frac{2}{5} \times \frac{2}{5} \times 500 \\= \frac{1760}{7} \:cm^{3} \: --(1)

 Radius \:of \: conical \:vessel = 12 \:cm

 Depth = 35 \:cm

 \therefore Capacity \:of \:the \: vessel \\= \frac{1}{3} \times \pi r^{2} h

 = \frac{1}{3} \times \frac{22}{7}\times 12 \times 12 \times 36 \\= \frac{38016}{7} \:cm^{3} \:--(2)

 Time \: required \:to \:fill \: the \: vessel \\=\frac{ capacity \: of \: the \:vessel }{Volume \:of \: water \:flowing \:per \:minute } \\= \frac{ \frac{38016}{7}}{\frac{1760}{7}}\\= \frac{38016}{1760} \\= 21\frac{3}{5} \:min

•••♪

Similar questions