What amount of heat must be supplied to 2.0 × 10–2 kg of nitrogen (at room temperature) to raise its temperature by 45 °C at constant pressure? (Molecular mass of N2 = 28; R = 8.3 J mol–1 K–1.)
Answers
Answer:
Mass of nitrogen, m = 2.0 × 10–2 kg = 20 g
Rise in temperature, ΔT = 45°C
Molecular mass of N2, M = 28
Universal gas constant, R = 8.3 J mol–1 K–1
Number of moles, n = m/M
= (2 × 10-2 × 103) / 28
= 0.714
Molar specific heat at constant pressure for nitrogen, Cp = (7/2)R
= (7/2) × 8.3
= 29.05 J mol-1 K-1
The total amount of heat to be supplied is given by the relation:
ΔQ = nCP ΔT
= 0.714 × 29.05 × 45
= 933.38 J
Therefore, the amount of heat to be supplied is 933.38 J.
Answer:
Mass of nitrogen, m = 2.0 × 10-2 kg = 20 g
Rise in temperature, ΔT = 45°C
Molecular mass of N2, M = 28
Universal gas constant, R = 8.3 J mol-1 K-1
Number of moles, n = m / M
= 2.0 x 10-2 x 103 / 28 = 0.714
Molar specific heat at constant pressure for nitrogen, CP = 7/2R
= 7/2 x 8.3
= 29.05 J mol-1 K-1
The total amount of heat to be supplied is given by the relation:
ΔQ = nCP ΔT
= 0.714 × 29.05 × 45
= 933.38 J
Therefore, the amount of heat to be supplied is 933.38 J.
mark as brainlist