What are the coordinates of the centre of a circle. where coordinates of end points of diameter are given as (9,9) and (9,-21)?
Answers
Given :
- Coordinates of end points of diameter are (9,9) and (9,-21)
To Find :
- The coordinates of centre of the circle
Figure :
Solution :
The coordinates of centre of the circle is equal to the coordinates of mid point of diameter.
Let coordinates of the mid point be (x,y)
Mid point of a line whose end point are (x₁,y₁) and (x₂ ,y₂) is given by ,
Now by comparing the coordinates we have with the formula . We get ,
- x₁ = 9 , x₂ = 9
- y₁ = 9 , y₂ = -21
Now substituting the values ,
Hence , The coordinates of the centre of the circle is (9,6)
Answer:
Given :
Coordinates of end points of diameter are (9,9) and (9,-21)
To Find :
The coordinates of centre of the circle
Figure :
\setlength{\unitlength}{1mm}\begin{picture}(50,55)\linethickness{0.4mm}\qbezier(45,30)(45,30)(5,30)\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\multiput(5,30)(20,0){3}{\circle*{1}}\put(48,28){\sf (9,-21)}\put(-8,28){\sf (9,9)}\put(21,25){\sf (x,y)}\end{picture}
Solution :
The coordinates of centre of the circle is equal to the coordinates of mid point of diameter.
Let coordinates of the mid point be (x,y)
Mid point of a line whose end point are (x₁,y₁) and (x₂ ,y₂) is given by ,
\begin{gathered} \\ \star \: \boxed{\sf{\purple{(x \:, y) = \bigg( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \bigg) }}} \\ \\ \end{gathered}
⋆
(x,y)=(
2
x
1
+x
2
,
2
y
1
+y
2
)
Now by comparing the coordinates we have with the formula . We get ,
x₁ = 9 , x₂ = 9
y₁ = 9 , y₂ = -21
Now substituting the values ,
\begin{gathered} \\ : \implies \sf \: (x,y) = \bigg( \frac{9 + 9}{2} \: ,\frac{9 + ( - 21)}{2} \bigg) \\ \\ \end{gathered}
:⟹(x,y)=(
2
9+9
,
2
9+(−21)
)
\begin{gathered} \\ : \implies \sf \: (x,y) = \bigg( \frac{18}{2} \: , \frac{12}{2} \bigg) \\ \\ \end{gathered}
:⟹(x,y)=(
2
18
,
2
12
)
\begin{gathered} \\ : \implies{\boxed{\pink{\sf{\: (x,y) =( 9 ,\: 6)}}}} \: \bigstar \\ \\ \end{gathered}
:⟹
(x,y)=(9,6)
★
Hence , The coordinates of the centre of the circle is (9,6)