Chemistry, asked by rajviprasad2601, 5 months ago

what is allotropy? explain 3 allotropes of carbon.

plzz help me guy's​

Answers

Answered by harikagrandhi
4

Answer:

Structure Of Carbon Allotropes

When an element exists in more than one crystalline form, those forms are called allotropes; the two most common allotropes of carbon are diamond and graphite. The crystal structure of diamond is an infinite three-dimensional array of carbon atoms, each of which forms a structure in which each of the bonds makes equal angles with its neighbours. If the ends of the bonds are connected, the structure is that of a tetrahedron, a three-sided pyramid of four faces (including the base). Every carbon atom is covalently bonded at the four corners of the tetrahedron to four other carbon atoms. The distance between carbon atoms along the bond is 1.54 × 10−8 cm, and this is called the single-bond length. The space lattice of the diamond can be visualized as carbon atoms in puckered hexagonal (six-sided) rings that lie roughly in one plane, the natural cleavage plane of the crystal; and these sheets of hexagonal, puckered rings are stacked in such a way that the atoms in every fourth layer lie in the same position as those in the first layer. The layer arrangement sequence is thus ABCABCA…. Such a crystal structure can be destroyed only by the rupture of many strong bonds. Thus, the extreme hardness, the high sublimation temperature, the presumed extremely high melting point (extrapolated from known behaviour), and the reduced chemical reactivity and insulating properties are all reasonable consequences of the crystal structure. Because of both the sense and the direction of the tetrahedral axis, four spatial orientations of carbon atoms exist, leading to two tetrahedral and two octahedral (eight-faced) forms of diamond.

Hope diamond

Hope diamond

The Hope diamond; in the Smithsonian Institution, Washington, D.C.

Lee Boltin

graphene

graphene

Learn about some possible applications of graphene, a uniquely strong, flexible, and thin carbon-based material.

© American Chemical Society (A Britannica Publishing Partner)

See all videos for this article

The crystal structure of graphite amounts to a parallel stacking of layers of carbon atoms. Within each layer the carbon atoms lie in fused hexagonal rings that extend infinitely in two dimensions. The stacking pattern of the layers is ABABA…; that is, each layer separates two identically oriented layers. Within each layer the carbon–carbon bond distance is 1.42 × 10−8 cm, which is intermediate between the single bond and double (1.33 × 10−8 cm) bond distances. All carbon–carbon bonds within a layer are the same (an observation that is interpreted in terms of complete π-bonding). The interlayer distance (3.37 × 10−8 cm) is sufficiently large to preclude localized bonding between the layers; the bonding between layers is probably by van der Waals interaction (i.e., the result of attraction between electrons of one carbon atom and the nuclei of neighbouring atoms). Ready cleavage, as compared with diamond, and electrical conductivity are consequences of the crystal structure of graphite. Other related properties are softness and lubricity (smoothness, slipperiness). A less common form of graphite, which occurs in nature, is based upon an ABCABCA… stacking, in which every fourth layer is the same. The amorphous varieties of carbon are based upon microcrystalline forms of graphite. The individual layers of carbon in graphite are called graphene, which was successfully isolated in single-layer form in 2004 by physicists Konstantin Novoselov and Andre Geim. (They received the 2010 Nobel Prize in Physics for their work.)

The greater degree of compactness in the diamond structure as compared with graphite suggests that by the application of sufficient pressure on graphite it should be converted to diamond. At room temperature and atmospheric pressure, diamond is actually less stable than graphite. The rate of conversion of diamond to graphite is so slow, however, that a diamond persists in its crystal form indefinitely. As temperature rises, the rate of conversion to graphite increases substantially, and at high temperatures it becomes (thermodynamically) favourable if the pressure is sufficiently high. At the same time, however, the rate of conversion decreases as the (thermodynamic) favourability increases. Thus, pure graphite does not yield diamond when heated under high pressure, and it appears that direct deformation of the graphite structure to the diamond structure in the solid state is not feasible. The occurrence of diamonds in iron–magnesium silicates in the volcanic structures called pipes and in iron–nickel and iron sulfide phases in meteorites suggests that they were formed by dissolution of carbon in those compounds and subsequent crystallization from them in the molten state at temperatures and pressures favourable to diamond stability. The successful synthesis of diamond is based

Answered by Anonymous
41

\huge{\bf{\mathtt{\red{AnSweRs}}}}

\;\;\;\;\;\;\;\;\;\;\;

_________________________

\;\;\;\;\;\;\;\;\;\;

\large{\bf{\green{\mathtt{What\:is\:allotropy?/: Explain\:3allotropes\:ofcarbon}}}}

\;\;\;\;\;\;\;\;\;\;

➜ Allotropy is the property of some chemical elements to Exists in two or more different forms , in the same physical state , known as allotropes of the element.

The carbon element exist in three solid forms called allotropes .

\;\;\;\;\;\;\;\;\;

  • diamond

  • Graphite

  • Buckminsterfullerene

\;\;\;\;\;\;\;\;\;

Diamond and graphite are the two common allotropes of carbon known us from centuries

buckminsterfullerene is the new allotrope discovered recently ..

__________________________

Similar questions