What is f(x)=∫cot2xdx if f(π8)=0?
Answers
Answered by
0
Answer.......
f(x)=1/2ln√2sin(2x)
Explanation:
f(x)=∫cot2xdx
f(x)=∫(cos2x/sin2x)dx
now
(d/dx(sin2x)=2cos2x)
we have a log integration.
f(x)=∫(cos2x/sin2x)dx=1/2lnsin2x+C
f(π/8)=0
∴1/2lnsin(π/4)+C=0
rewrite C=1/2lnK in order to include it in the log.
1/2lnsin(π/4)+1/2lnk=0
1/2[(lnsin(π/4)+lnk]=0
1/2(lnksin(π/4))=0
lnx=0⇒x=1 ∴ksin(π/4)=1
k(√2/2)=1
k=2/√2=√2
f(x)=1/2ln√2sin(2x)
Similar questions