what is meant by velocity
Answers
Answered by
3
IT IS THE DISPLACEMENT PER UNIT TIME.ITS SI UNIT IS M/SEC
buddy195:
hi
Answered by
3
The velocity of an object is the rate of changeof its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. 60 km/hto the north). Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.
Velocity

As a change of direction occurs while the racing cars turn on the curved track, their velocity is not constant.
Common symbols
v, v, v→
Other units
mph, ft/s
In SI base units
m/s
Dimension
L T−1
Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second(m/s) or as the SI base unit of (m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object has a changing velocity and is said to be undergoing an acceleration.
Constant velocity vs acceleration
To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.
For example, a car moving at a constant 20 kilometres per hour in a circular path has a constant speed, but does not have a constant velocity because its direction changes. Hence, the car is considered to be undergoing an acceleration.
Distinction between speed and velocity

Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a.
Speed describes only how fast an object is moving, whereas velocity gives both how fast it is and in which direction the object is moving.[1] If a car is said to travel at 60 km/h, its speed has been specified. However, if the car is said to move at 60 km/h to the north, its velocity has now been specified.
The big difference can be noticed when we consider movement around a circle. When something moves in a circular path (at a constant speed, see above) and returns to its starting point, its average velocity is zero but its average speed is found by dividing the circumference of the circle by the time taken to move around the circle. This is because the average velocity is calculated by only considering the displacement between the starting and the end points while the average speed considers only the total distancetraveled.
Equation of motion
Main article: Equation of motion
Average velocity
Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the "average velocity" of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v(t), over some time period Δt. Average velocity can be calculated as:
The average velocity is always less than or equal to the average speed of an object. This can be seen by realizing that while distance is always strictly increasing, displacement can increase or decrease in magnitude as well as change direction.
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.
The average velocity is the same as the velocity averaged over time – that is to say, its time-weighted average, which may be calculated as the time integral of the velocity:
where we may identify
and
Instantaneous velocity

Example of a velocity vs. time graph, and the relationship between velocity v on the y-axis, acceleration a (the three green tangent lines represent the values for acceleration at different points along the curve) and displacement s(the yellow area under the curve.)
If we consider v as velocity and x as the displacement (change in position) vector, then we can express the (instantaneous) velocity of a particle or object, at any particular time t, as the derivative of the position with respect to time:
From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, x. In calculus terms, the integralof the velocity function v(t) is the displacement function x(t). In the figure, this corresponds to the yellow area under the curve labeled s (s being an alternative notation for displacement).
Velocity

As a change of direction occurs while the racing cars turn on the curved track, their velocity is not constant.
Common symbols
v, v, v→
Other units
mph, ft/s
In SI base units
m/s
Dimension
L T−1
Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second(m/s) or as the SI base unit of (m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object has a changing velocity and is said to be undergoing an acceleration.
Constant velocity vs acceleration
To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.
For example, a car moving at a constant 20 kilometres per hour in a circular path has a constant speed, but does not have a constant velocity because its direction changes. Hence, the car is considered to be undergoing an acceleration.
Distinction between speed and velocity

Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a.
Speed describes only how fast an object is moving, whereas velocity gives both how fast it is and in which direction the object is moving.[1] If a car is said to travel at 60 km/h, its speed has been specified. However, if the car is said to move at 60 km/h to the north, its velocity has now been specified.
The big difference can be noticed when we consider movement around a circle. When something moves in a circular path (at a constant speed, see above) and returns to its starting point, its average velocity is zero but its average speed is found by dividing the circumference of the circle by the time taken to move around the circle. This is because the average velocity is calculated by only considering the displacement between the starting and the end points while the average speed considers only the total distancetraveled.
Equation of motion
Main article: Equation of motion
Average velocity
Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the "average velocity" of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v(t), over some time period Δt. Average velocity can be calculated as:
The average velocity is always less than or equal to the average speed of an object. This can be seen by realizing that while distance is always strictly increasing, displacement can increase or decrease in magnitude as well as change direction.
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.
The average velocity is the same as the velocity averaged over time – that is to say, its time-weighted average, which may be calculated as the time integral of the velocity:
where we may identify
and
Instantaneous velocity

Example of a velocity vs. time graph, and the relationship between velocity v on the y-axis, acceleration a (the three green tangent lines represent the values for acceleration at different points along the curve) and displacement s(the yellow area under the curve.)
If we consider v as velocity and x as the displacement (change in position) vector, then we can express the (instantaneous) velocity of a particle or object, at any particular time t, as the derivative of the position with respect to time:
From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, x. In calculus terms, the integralof the velocity function v(t) is the displacement function x(t). In the figure, this corresponds to the yellow area under the curve labeled s (s being an alternative notation for displacement).
Similar questions