What is rational no and how we can solve it by using contradiction method only explain method ................urgent test is tomorrow
Answers
Answered by
2
Rational number is a real number which can be expressed as a ratio of two integer numbers.
For example,
Certain numbers like √2 is not expressible in the form of ratio of integers. So it is not a rational number.All fractional numbers and integers are rational numbers.
All rational numbers can be expressed as ratio of two integers that are co-prime (relatively prime to each other). That means that, the integers do not have common factors.
When we have to prove x is a rational number, then assume that . Then after squaring or repeated multiplication or arithmetic operations or rationalization, if you can prove that p and q are not integers or some other rule about factorization is violated, then our assumption about\ is wrong.
This is the contradiction method. You assume and arrive at a contradiction.
If q has a factor(2√5-3), then it is not an integer.
For example,
Certain numbers like √2 is not expressible in the form of ratio of integers. So it is not a rational number.All fractional numbers and integers are rational numbers.
All rational numbers can be expressed as ratio of two integers that are co-prime (relatively prime to each other). That means that, the integers do not have common factors.
When we have to prove x is a rational number, then assume that . Then after squaring or repeated multiplication or arithmetic operations or rationalization, if you can prove that p and q are not integers or some other rule about factorization is violated, then our assumption about\ is wrong.
This is the contradiction method. You assume and arrive at a contradiction.
If q has a factor(2√5-3), then it is not an integer.
kvnmurty:
thanks.
Similar questions