What is remainder and quotient when polynomial 2x^6-3x^4 - 5x^2+3x-2is divided by 4 -3x-x^2
Answers
Answer:
729x - 1464 is remainder
Step-by-step explanation:
Given : polynomial, 2x^6 - 3x⁴ - 5x² + 3x - 2 is divided by (4 - 3x - x²)
To find : The remainder and quotient.
solution : Let's divide (2x^6 - 3x⁴ - 5x² + 3x - 2) by (4 - 3x - x²)
4-3x-x²)2x^6-3x⁴-5x²+3x-2(-2x⁴+6x³-23x²+93x-366
2x^6+6x^5-8x⁴
.........................................................
-6x^5+5x⁴-5x²
-6x^5-18x⁴+24x³
...................................................
+23x⁴-24x³-5x²
23x⁴+69x³-92x²
........................................................
-93x³+87x²+3x
-93x³-279x²+372x
.....................................................
366x²-369x-2
366x²+1098x-1464
..............................................................
-1467x+1462
Therefore remainder = (-1467x + 1462)
quotient = (-2x⁴ + 6x³ - 23x² + 93x - 366)
also read similar questions : Divide 2x³+3x²+5x+6 by x²+3x+2. Find the quotient and remainder and verify the division algorithm
Pls answer
https://brainly.in/question/10391322
On dividing ×^4 -x^3-3x^2+3x+2 by polynomial g(x) the quotient and the remainder are x^2-x-2 & 2x respectively find g(x)
https://brainly.in/question/15819551