Math, asked by krish22092003, 1 year ago

what is the area of the largest circle that can be drawn inside a rectangle of length a cm and breadth b cm

Answers

Answered by viditpokharna
0

Answer:

It depends on whether a or b is smaller. If a is smaller, then it would be \frac{a}{2}^{2}\pi = \frac{a^{2}\pi  }{4} and if b is smaller, then it would be \frac{b}{2}^{2}\pi = \frac{b^{2}\pi  }{4}

Step-by-step explanation:



divyansh101dabral: your formula is wierd bro
divyansh101dabral: which formula have you given
viditpokharna: I know but once you think about it, it is correct
viditpokharna: You use whichever one is smaller (a or b), divide by two to find radius, and then square that, then multiply by pi
viditpokharna: And I dont know why the A is there
divyansh101dabral: yes maybe the source of your formula was wrong
viditpokharna: I made the formula
Answered by divyansh101dabral
0

well the radius of largest possible circle is equal to the smallest possible dimension of a rectangle.Here i assume length is longer than breadth so it will be πb² ,

if length is smaller then it is πa²

Pls mark as BRAINLIEST

Similar questions