Physics, asked by harrypotter2854, 1 year ago

what is the big bang theory how does it explain the fact that all galaxies are moving away from each other and the universe is expanding

Answers

Answered by kannan27
0
The galaxies outside of our own are moving away from us, and the ones that are farthest away are moving the fastest. This means that no matter what galaxy you happen to be in, all the other galaxies are moving away from you.

However, the galaxies are not moving through space, they are moving in space, because space is also moving. In other words, the universe has no center; everything is moving away from everything else. If you imagine a grid of space with a galaxy every million light years or so, after enough time passes this grid will stretch out so that the galaxies are spread to every two million light years, and so on, possibly into infinity.

The universe encompasses everything in existence, from the smallest atom to the largest galaxy; since forming some 13.7 billion years ago in the Big Bang, it has been expanding and may be infinite in its scope. The part of the universe of which we have knowledge is called the observable universe, the region around Earth from which light has had time to reach us.

One famous analogy to explain the expanding universe is imagining the universe like a loaf of raisin bread dough. As the bread rises and expands, the raisins move farther away from each other, but they are still stuck in the dough. In the case of the universe, there may be raisins out there that we can’t see any more because they have moved away so fast that their light has never reached Earth. Fortunately, gravity is in control of things at the local level and keeps our raisins together.

if u like this plz mark me as brilliant...
Answered by abdul143
7
The Big Bang theory is the prevailing cosmological model for the universe[1] from the earliest known periods through its subsequent large-scale evolution. The model describes how the universe expanded from a very high-density and high-temperature state, and offers a comprehensive explanation for a broad range of phenomena, including the abundance of light elements, the cosmic microwave background (CMB), large scale structure and Hubble's law.[7] If the known laws of physics are extrapolated to the highest density regime, the result is a singularity which is typically associated with the Big Bang. Physicists are undecided whether this means the universe began from a singularity, or that current knowledge is insufficient to describe the universe at that time. Detailed measurements of the expansion rate of the universe place the Big Bang at around 13.8 billion years ago, which is thus considered the age of the universe.[8] After the initial expansion, the universe cooled sufficiently to allow the formation of subatomic particles, and later simple atoms. Giant clouds of these primordial elements later coalesced through gravity in halos of dark matter, eventually forming the stars and galaxies visible today.

Since Roman Catholic priest Georges Lemaître first noted in 1927 that an expanding universe could be traced back in time to an originating single point, scientists have built on his idea of cosmic expansion. The scientific community was once divided between supporters of two different theories, the Big Bang and the Steady State theory, but a wide range of empirical evidence has strongly favored the Big Bang which is now universally accepted.[9] In 1929, from analysis of galactic redshifts, Edwin Hubble concluded that galaxies are drifting apart; this is important observational evidence consistent with the hypothesis of an expanding universe. In 1964, the cosmic microwave background radiation was discovered, which was crucial evidence in favor of the Big Bang model,[10] since that theory predicted the existence of background radiation throughout the universe before it was discovered. More recently, measurements of the redshifts of supernovae indicate that the expansion of the universe is accelerating, an observation attributed to dark energy's existence.[11] The known physical laws of nature can be used to calculate the characteristics of the universe in detail back in time to an initial state of extreme density and temperature.

harrypotter2854: Shouldn't have be been more than thirty words
harrypotter2854: But yes good content
Similar questions