Physics, asked by bipashaGupta, 1 year ago

what is the distance covered by the freely falling body during the first 3 seconds of the motion

Answers

Answered by Anonymous
6
 \\ g = 10m/{s}^{-2} \\ \\ t = 3s \\ \\ u = 0m/{s}^{-1} \\ \\ s = ut + \frac {1}{2} g{t}^{2} \\ \\ s = 0 \times 3 + \frac {1}{2} \times 10 \times 9 \\ \\ s = 5 \times 9 \\ \\ Distance \: Travelled = 45 m

swag62: how will there 9 came
swag62: thanks i understand how to do
Answered by nilesh102
2

\fcolorbox{red}{white}{solution : -  } \\  \\ \underline{ \red{we \: know \: the \: acceleration \: due \: to \:}} \\  \underline{ \red{gravity \: is \: }9.8 \: m/ {s}^{2}  \:\ \red{ but \: we \: take \: }10 \: m/ {s}^{2} } \\  \\\underline{ \red {now \: }} \\  \underline{to \: calculate  \: distance \: travel \: by \: body}  \\  \underline{ we \: use}\\  \mathfrak{ \red{formula :  - }} \\  \\ s = ut +  \frac{1}{2} a {t}^{2}  \\  \\ \underline \red{where} \\   \\ {\red{v \:}  =  \: final  \: velocity \: }  \\ {\red{u \: } = \:  initial \:  velocity \: } \\  {\red{a  \:} =  \: acceleration}  \\ {\red{t \:}  =  \: time  \: taken} \\ \\  \underline \red{we \: know \: initial \: velocity \: is \: 0}  \ \\  \underline{ hence}  \\ \\   \\   s =  \frac{1}{2}  \times 10 \times  {3}^{2}  \\  \\ s \:  =  \frac{1}{2}  \times 10 \times 9 \\  \\ s =  \frac{90}{2}  = 45  \: meter \\  \\  \underline{\fbox{to \: find}} \\ \\  \underline{ \: How  \: long  \: does  \: the \:  body \:  remain \:  in \:  air  ...  } \\  \\\underline{ \red{ we \: use}} \\  \\ s  = \frac{u + a}{2}  \times (2n - 1) \\  \\ we \: know \:  \red { u  = 0  } \: and  \: \: \red{ a = 10} \: and \: \red{ s = 45  \: } \:  \\ so \\  \\ 45 =  \frac{0 + 10}{2}  \times ( 2n - 1) \\  \\  \\ 45 = 5(2n - 1) \\ i.e. \\  \\ 5(2n - 1) = 45 \\  \\ 2n - 1 =  \frac{45}{5}  \\  \\ 2n - 1 = 9 \\  \\ 2n = 9 + 1 \\  \\ 2n = 10 \\  \\ n \:  =  \frac{10}{2}  \\  \\ \fcolorbox{red}{white}{ n \:  = 5 \: sec} \\  \\ \underline{ so \: we \: know \: now \: } \\  \\   \small{\fcolorbox{red}{white}{The \:  body \:  remains  \: in  \: the  \: air  \: for \: 5 \: sec}} \\  \\   \underline\red{i \: hope \: it \: helps \: you}.....

Similar questions