Physics, asked by honululuzzz, 1 year ago

what is the resistivity of a capacitor ? how do we calculate it

Attachments:

Answers

Answered by samuelpaul
1

Likewise, when the supply voltage is reduced the charge stored in the capacitor also reduces and the capacitor discharges. But in an AC circuit in which the applied voltage signal is continually changing from a positive to a negative polarity at a rate determined by the frequency of the supply, as in the case of a sine wave voltage, for example, the capacitor is either being charged or discharged on a continuous basis at a rate determined by the supply frequency.

As the capacitor charges or discharges, a current flows through it which is restricted by the internal impedance of the capacitor. This internal impedance is commonly known as Capacitive Reactance and is given the symbol XC in Ohms.

Unlike resistance which has a fixed value, for example, 100Ωs, 1kΩ, 10kΩ etc, (this is because resistance obeys Ohms Law), Capacitive Reactance varies with the applied frequency so any variation in supply frequency will have a big effect on the capacitors, “capacitive reactance” value.

As the frequency applied to the capacitor increases, its effect is to decrease its reactance (measured in ohms). Likewise as the frequency across the capacitor decreases its reactance value increases. This variation is called the capacitors complex impedance.

Complex impedance exists because the electrons in the form of an electrical charge on the capacitor plates, appear to pass from one plate to the other more rapidly with respect to the varying frequency.

As the frequency increases, the capacitor passes more charge across the plates in a given time resulting in a greater current flow through the capacitor appearing as if the internal impedance of the capacitor has decreased. Therefore, a capacitor connected to a circuit that changes over a given range of frequencies can be said to be “Frequency Dependant”.


honululuzzz: answer the question.
Similar questions