Physics, asked by vardhan5151, 9 months ago

What is the slant height of cone if the total surface area of cone is 17776 meter cube and the radius of cone is 56 m.?​

Answers

Answered by Anonymous
2

GIVEN:

\longrightarrow\sf{Total\: surface\: area \: of \: cone = 17776\: m^3 }

\longrightarrow\textsf{Radius of the cone = 56 cm}

TO FIND:

\longrightarrow\sf\red{Slant \: height \: of \: the \: cone}⟶

SOLUTION:

Let the slant height be "l"

We know that,

\longmapsto\underline{\boxed{\sf\green{Total\: surface\: area \: of \: cone = \pi r [ r + l ] }}}⟼Totalsurfaceareaofcone=πr[r+l]

Substitute the values.

\implies\sf 17776 = \pi r [ r + l ]⟹17776=πr[r+l]

\implies\sf 22/7 \times 56 [ 56 + l ] = 17776⟹22/7×56[56+l]

\implies\sf 22 \times 8 [ 56 + l ] = 17776⟹22×8[56+l]

\implies\sf 176 [ 56 + l ] = 17776⟹176[56+l]

\implies\sf 56 + l = \dfrac{17776}{176}

\implies\sf 56 + l = 101

\implies\sf l = 101 - 56

\implies\sf l = 45

\therefore\underline\textsf{ The slant height of the cone is 45m.}

Answered by Anonymous
0

Given :

  • TSA of cone = 17776 m²
  • Radius of cone = 56 m

To Find :

  • Slant height  \sf (\ell) of the cone = ?

Solution :

We know that,

\large \underline{\boxed{\bf{TSA = \pi r (l+r)}}}

By substituting values, and take π =  \sf \dfrac{22}{7}

 \sf : \implies 17776 = \dfrac{22}{\cancel{7}} \times \cancel{56} ( \ell + 56)

 \sf : \implies 17776 = 22 \times (8 \ell + 448)

 \sf : \implies \cancel\dfrac{17776}{22} = 8 \ell + 448

 \sf : \implies 808 = 8 \ell + 448

 \sf : \implies 808-448 = 8 \ell

 \sf : \implies 360 = 8 \ell

 \sf : \implies \cancel\dfrac{360}{8} = \ell

 \sf : \implies 45 = \ell

Hence, Slant height  \sf (\ell) of cone = 45 m.

Similar questions