Math, asked by gerhgrehrttj, 1 year ago

What is the solution set of |2x + 1| > 5?A. {x|1 < x <
–3} B. {x|–1 < x < 3} C. {x|x > 2 or x < –3} D. {x|x < 2
or x > –3}

Answers

Answered by TestUser2
1
|2x+1|&gt;5\\\\2x+1&gt;5\ \vee\ 2x+1&lt;-5\\\\2x&gt;5-1\ \vee\ 2x&lt;-5-1\\\\2x&gt;4\ \vee\ 2x&lt;-6\\\\x&gt;2\ \vee\ x&lt;-3\\\\Answer:C&gt;\{x|\ x&gt;2\ or\ x&lt;-3\}
Answered by kvnmurty
0
Solution set is the set of all values of x, which satisfy the given condition.
 | 2 x + 1 | > 5
 Let  a = | 2 x + 1 |     
then  a =  2 x + 1    if  2x+1 is positive or zero
           =  - 2x -1    if  2x+1 is negative of zero
Let 2x+1 be 0 or more.
   so  2x + 1 > 5       =>   2x > 5 - 1 = 4    =>   2x > 4    =>    x > 2
Let 2x+1 be 0 or less
  so - 2 x - 1  > 5    =>  -2 x  > 6      =>  -x  > 3    =>  x <  -3
                     (as When you multiply by -1, the inequality reverses.)

So we have    x > 2  and x < -3.
Answer is option C

There is also a quicker way:
       |2x+1| > 5      =>  this is rewritten as
    -5 >  2x+1  > 5    Left side gives, x < -3 & right side gives x >2

Similar questions
Math, 8 months ago