Math, asked by Anonymous, 10 months ago

what must be added in 7/3 to get 6/8 ​

Answers

Answered by Anonymous
74

\underline{\underline{\bf{\bigstar\: Solution : }}}\\

\:\:

{\footnotesize{ Let, \:the\:no.\: added\:be\:x}}

\:\:

\red{\footnotesize{ Sum\: of\:no. = \dfrac{6}{8}}}\\

{\footnotesize{\implies \dfrac{7}{3} + x = \dfrac{6}{8}}}\\

{\footnotesize{\implies  x = \dfrac{6}{8} - \dfrac{7}{3} }}\\

{\footnotesize{\implies x = \dfrac{18 - 56}{24}}}\\

{\footnotesize{\implies x = \dfrac{-38}{24}}}\\

\green{\footnotesize{\implies x = \dfrac{-19}{12}}}\\

\:\:

\underline{\underline{\bf{\bigstar\: Answer : \dfrac{-19}{12} }}}\\

Answered by Anonymous
14

\huge\mathfrak{Answer:}

Given:

  • We have been given two rational numbers, 7/3 and 6/8.

To Find:

  • We need to find a number that must be added to 7/3 to get 6/8.

Solution:

Let the number that must be added to 7/3 to get 6/8 be x.

By Question

 \sf{ \dfrac{7}{3}  + x =  \dfrac{6}{8} }

 \implies\sf{x =  \dfrac{6}{8}  -  \dfrac{7}{3} }

 \implies\sf{ x = \dfrac{6 \times 3 - 7 \times 8}{24} }

 \implies\sf{x =  \dfrac{18 - 56}{24} }

 \implies\sf{x =   \dfrac{ - 38}{24}}

 \implies\sf{x =  \dfrac{ - 19}{12} }

Hence, the required number is -19/12.

Verification:

\implies\sf{ \dfrac{7}{3} + ( \dfrac{ - 19}{12} )}

 \implies\sf{ \dfrac{7}{3}  -  \dfrac{19}{12} }

 \implies\sf{ \dfrac{(7 \times12) - (3 \times 19)}{3 \times 12} }

 \implies\sf{ \dfrac{84 - 57}{36} }

 \implies\sf{ \dfrac{27}{36} }

 \implies\sf{ \dfrac{3}{4} }

\implies\sf{\dfrac{3}{4} = \dfrac{6}{8}}

\implies\sf{\dfrac{3}{4} = \dfrac{3}{4}}

Hence verified!!

Hence, -19/12 is the required number.


BraɪnlyRoмan: Sweet♡
Similar questions