Math, asked by Giaanamrit, 6 months ago

What must be added to the numbers 8, 14, 28 and 42 so that they are in proportion?
(A) 3
(B) 7
(C) 9
(D) 8.
Explain the whole question.

Answers

Answered by Anonymous
61

Answer:

2 needs to be added to each of the 4 numbers - 6, 14, 18 and 38 to make the resulting numbers in proportion.

Step-by-step explanation:

✔️ Let us add x to each of the four numbers to get (6+x):(14+x)::(18+x):(38+x). The product of the ends = the product of the means, or

(6+x)(38+x) = (14+x)(18+x), or

x^2 + 44x + 228 = x^2 + 32x + 252, or

44x - 32x = 252–228, or

12x = 24, or x =2.

⏩Check:⤵️

8:16::20:40 or 8*40 = 320 same as 16*20 - 320. Correct.

⏩Hence⤵️

2 needs to be added to each of the 4 numbers - 6, 14, 18 and 38 to make the resulting numbers in proportion.

Answered by ITZBFF
0

 \boxed{ \boxed{ \sf \red{Firstly \:  let  \: us \:  understand}}} \\

 \sf{Assume  \: two  \: ratios \:  are \:  in  \: proportion \: i.e.}

 \sf{ a:b :: c:d}

 \sf{here : \: a \: \& \: d \: are \: called \:\red{product \: of \: extremes }} \\  \sf{ \:  \:  \:  \:  \:  \:  \:  \: b \:\& \: c \: are \: called \:  \red{product \: of \: means} }

 \boxed{ \boxed{ \sf \red{ Let  \: us \: come \: to \: question}}}   \\

What must be added to the numbers 8, 14, 28 and 42 so that they are in proportion ?

 \underline{ \underline{{ \sf \red{Answer}}}}

  \sf \red{Given: }

 \rm{\: numbers \: are : \: 8 ,\: 14, \: 2, \: 42 }

 \rm{let \: the \: number \: x \: needs \: to \: be \: added}

 \mathrm\red{adding \:x \: to \:  the \: numbers  \: we \: get :  }

 \rm{8 + x ,\: 14+ x ,\: 28 + x, \: 42 + x}

  \sf\red{also \: given, \: the \: numbers \: are \: \: proportional}

 \rm{8+ x : 14+ x  :   : 28 + x :42 + x }

 \sf \red{now}

 \boxed{ \boxed{ \sf \blue{products \: of \: means \:  =  \: product \: of \: extremes}}} \\

 \rm{(14 + x )( 28 + x) = (8 + x)(42 + x)}

 \rm{392 + 14x + 28x +  {x}^{2} =336 + 8x + 42x +  {x}^{2}   }

 \rm{ {x}^{2}  +42x + 392 \:  =  \:  {x}^{2}  + 50x + 336 }

 \rm{ {x}^{2}  -  {x}^{2} + 392 - 336 = 50x - 42x }

 \rm{56 = 8x}

 \rm{x \:  =  \:  \frac{56}{8} } \\

 \boxed{  \boxed{\rm{x = 7}}}

so answer is x = 7

Similar questions