Math, asked by SantanuI, 5 months ago

what will be the labour charges for digging a cuboidal pit 8 metre long 6 metre broad and 3 metre deep at the rate of Rs 20 per metre³​

Answers

Answered by vikrantmani07
0

Answer:

Weneed to find that how many minutes will it take, then only we can find the answer

Answered by thebrainlykapil
12

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • what will be the labour charges for digging a cuboidal pit 8 metre long 6 metre broad and 3 metre deep at the rate of Rs 20 per metre³ ?

 \\

\large\underline{ \underline{ \sf \maltese{ \: Diagram:- }}}

\setlength{\unitlength}{0.74 cm}\begin{picture}\thicklines\put(5.6,5.4){\bf A}\put(11.1,5.4){\bf B}\put(11.2,9){\bf C}\put(5.3,8.6){\bf D}\put(3.3,10.2){\bf E}\put(3.3,7){\bf F}\put(9.25,10.35){\bf H}\put(9.35,7.35){\bf G}\put(3.5,6.1){\sf 8\:cm}\put(7.7,6.3){\sf 6\:cm}\put(11.3,7.45){\sf 3\:cm}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

 \\ \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Length of the Cuboidal Pit = 8 metre
  • Breadth of the Cuboidal Pit = 6 metre
  • Height of the Cuboidal Pit = 3 metre
  • Digging Charges = Rs, 20 per

 \\

\large\underline{ \underline{ \sf \maltese{ \: </strong><strong>To </strong><strong>\</strong><strong>:</strong><strong> </strong><strong>Find</strong><strong>:- }}}

  • Charges of the Labour for Digging a Cuboidal Pit with the Given Dimensions.

 \\

\large\underline{ \underline{ \sf \maltese{ \: </strong><strong>Solution</strong><strong>:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Volume \: of \: the \: Pit \: = \: Length\:  \times  \: Breadth \:  \times  \: Height  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{Volume \: of \: the \: Pit \: =  \: 8\:  \times  \: 6 \:  \times  \:3 }}\\

\qquad \quad {:} \longrightarrow \sf{\bf{Volume \: of \: the \: Pit \: =  \: 144{m}^{3} }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Volume \: of \: the \: Pit \: =  \: 144{m}^{3}   }}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

Since, Labour Charges are at the Rate of Rs,20 per m³.

\underbrace\red{\boxed{ \sf \blue{ Total \: Labour \: Charges }}}

\qquad \quad {:} \longrightarrow \sf{\bf{Total \: Labour \: Charges \:  =  \: Volume \: of \: pit \:  \times  \: 20}}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Total \: Labour \: Charges \:  =  \: 144 \:  \times  \: 20 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{Total \: Labour \: Charges \:  =  \: 2880 }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ Total \: Labour \: Charges \:  =  \: Rs,2880  }}}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{Total \: Labour \: Charges \: = \underline {\underline{ Rs, 2880}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

More For Knowledge:-

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&amp;\bf Volume\ formula&amp;\bf Surface\ area formula\\\cline{1-3}\sf Cube&amp;\tt l^3}&amp;\tt 6l^2\\\cline{1-3}\sf Cuboid&amp;\tt lbh&amp;\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&amp;\tt {\pi}r^2h&amp;\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&amp;\tt \pi{h}(R^2-r^2)&amp;\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&amp;\tt 1/3\ \pi{r^2}h&amp;\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&amp;\tt 4/3\ \pi{r}^3&amp;\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&amp;\tt 2/3\ \pi{r^3}&amp;\tt 3\pi{r}^2\\\cline{1-3}\end{array}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions