Math, asked by 24541278r, 1 year ago

what would the final displacement of water if 500 people take dip and the height of tank if 80m and breadth is 50 and the average displacement is 4mcube

Answers

Answered by kunalboss
0
first we take out the volume of water
80×50 m
400m
displacement =4mcube
so4×500
2000m cube
so here all the water will go and only humans will fit
as 2000 is far more than 400 m cube
even if it is an average
Answered by nilesh102
2

\textbf{\huge\underline{\underline\red{solution} : -  }} \\  \\ \bold{\underline\purple{here \: we \: know}} \\  \\  \red{1.} \bold \blue{ \: length  \: (l)\: of \: cuboidal \: \: tank \: is \: 80 \: m .} \\ \red{2.} \bold \blue{ \: breadth  \:( b)\: of \: cuboidal \: tank \: is \: 50 \: m.} \\ \red{3.} \bold \blue{ \: displacement \: of \: water \: by \: a \: one \: } \\  \bold \blue{person \: in \: a \: tank \: is \:4 \:  {m}^{3} .} \\  \\ \underline \bold\red{so \:  \:displacement \: of \: water \: in \: a \: tank \: by \:} \\ \underline \bold\red{ 500 \: persons  }  =  \blue{500 \times4 = 2000\: }\bold\blue{ {m}^{3}  \:  \:  \:  \: ..(1)} \\  \\  \underline \bold \purple{let \: height \: of \: cuboidal \: tank \: is \: h} \\  \\ \underline\bold\blue{to \: find \: volume \: of \: water \: in \: tank} \\  \\ \underline \bold \red{volume\: of \: cuboidal \: tank \: } =  \bold \purple{ l\times  b\times h} \\  \\  \bold \red{v.o.c.t} =  \bold \purple{80 \times 50 \times h} \\  \\ \bold \red{v.o.c.t} =  \bold \purple{(4000 \times h \: \: )  {m}^{3} \:  \:  \: ..(2) } \\  \\    \underline\bold\blue{as \: we\: know} \\  \\  \underline\bold\purple{volume \: of \: raised \: water \: in \: cuboidal } \\ \underline\bold\purple{tank \: is \: equal \: to \: displacement \: of \: water \: in } \\ \underline\bold\purple{ tank\: by \:500 \: person .} \\  \\ \underline\bold\red{hence} \\  \\ \bold\red{volume \: of \: raised \: water \: in \: cuboidal} \\\bold\red{tank \:}  = \bold\purple{ displacement \: of \: water \: in } \\ \bold\purple{ tank\: by \:500 \: person .} \\  \\   =  > \bold \blue{4000 \times h} = \bold \blue{2000} \\  \\  =  > \bold \blue{h} = \bold \blue{ \frac{2000}{4000}} = \bold \blue{ \frac{1}{2} } = \bold \blue{0.5 \: m} \\  \\   \underline \bold\red{Hence   \: \purple{0.5 \: m} \: level \: of \: water \: rise \: in \: tank.}

Similar questions