Physics, asked by labanya61, 10 months ago

When light of wavelength lesser than 6000 A is
incident on a metal, electrons are emitted. The
approximate work-function of the metal is :
(1) 1 eV
(2) 2eV
(3) 4 eV
(4) 6 eV​

Answers

Answered by nirman95
5

Given:

When light of wavelength lesser than 6000 A° is incident on a metal, electrons are emitted.

To find:

Approximate work function of the metal ?

Calculation:

The work function (threshold energy) is the minimum energy of the photons required to emit an electron from the metal surface.

Let work function be W_(0):

 \therefore \: W_{0} = h \nu

  \implies\: W_{0} = h  \times  \dfrac{c}{ \lambda}

  \implies\: W_{0} = 6.63 \times  {10}^{ - 34}   \times  \dfrac{3 \times  {10}^{8} }{ 6000 \times  {10}^{ - 10} }

  \implies\: W_{0} = 6.63 \times  {10}^{ - 34}   \times  \dfrac{3 \times  {10}^{8} }{ 6\times  {10}^{ - 7} }

  \implies\: W_{0} = 6.63 \times  {10}^{ - 34}   \times  \dfrac{ {10}^{8} }{ 2\times  {10}^{ - 7} }

  \implies\: W_{0} = 6.63 \times  {10}^{ - 34}   \times   \dfrac{1}{2}  \times  {10}^{15}

  \implies\: W_{0} = 3.31 \times  {10}^{ - 34}   \times  {10}^{15}

  \implies\: W_{0} = 3.31 \times  {10}^{ - 19}   \: joule

  \implies\: W_{0} = \dfrac{ 3.31 \times  {10}^{ - 19}}{e}   \: eV

  \implies\: W_{0} = \dfrac{ 3.31 \times  {10}^{ - 19}}{1.6 \times  {10}^{ - 19} }   \: eV

  \implies\: W_{0} = 2  \: eV

So, work function of the metal is 2 eV.

Similar questions