Math, asked by rjsumanth111, 11 months ago

which one of the following is zero?
a)Grad div A
b)Div gradient v
c)Div curl A
d)curl curl A

Answers

Answered by rahul9490
1

Answer:

d no is the zero .....byy

Answered by brokendreams
0

C) Div curl A is 'zero'.

Step-by-step explanation:

Given: Vector A

To Prove: Div curl A = 0

Solution:

  • Proof for Div curl A = 0

Let the vector A is \vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k} such that the curl A is given by,

\vec{\nabla} \times \vec{A} = \begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\\frac{\partial}{\partial x} &\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\A_x&A_y&A_z \end{vmatrix}

\Rightarrow \vec{\nabla} \times \vec{A} = \hat{i} \Big( \dfrac{\partial A_z}{\partial y} - \dfrac{\partial A_y}{\partial z} \Big) - \hat{j} \Big( \dfrac{\partial A_z}{\partial x} - \dfrac{\partial A_x}{\partial z} \Big) + \hat{k} \Big( \dfrac{\partial A_y}{\partial x} - \dfrac{\partial A_x}{\partial y} \Big)

Now, div curl A is given by,

\vec{\nabla} \cdot ( \vec{\nabla} \times \vec{A}) = \Big( \hat{i}\frac{\partial }{\partial x} + \hat{j}\frac{\partial }{\partial y} + \hat{k}\frac{\partial }{\partial z} \Big) \cdot \Big[ \hat{i} \Big( \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \Big) - \hat{j} \Big( \frac{\partial A_z}{\partial x} - \frac{\partial A_x}{\partial z} \Big) + \hat{k} \Big( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \Big) \Big]

\Rightarrow \vec{\nabla} \cdot ( \vec{\nabla} \times \vec{A}) = \dfrac{\partial }{\partial x} \Big( \dfrac{\partial A_z}{\partial y} - \dfrac{\partial A_y}{\partial z} \Big) -  \dfrac{\partial }{\partial y} \Big( \dfrac{\partial A_z}{\partial x} - \dfrac{\partial A_x}{\partial z} \Big) +  \dfrac{\partial }{\partial z} \Big( \dfrac{\partial A_y}{\partial x} - \dfrac{\partial A_x}{\partial y} \Big)

\Rightarrow \vec{\nabla} \cdot ( \vec{\nabla} \times \vec{A}) = 0 - 0 + 0 = 0

Hence, div curl A is 'zero'.

Similar questions