Business Studies, asked by itzmesona, 3 months ago

which one of them is the external force of entrepreneurial motivation?
a. influence
b. strength
c. availability of resources
d.both A&C


give the answer​

Answers

Answered by ItzCutePrince1946
14

Given:

Expression: \frac{ \sin(30) + \tan(45 ) - \csc(60) }{ \sec(30) + \cos(60) + \cot(45) }

\\

To Find:

The value after the evaluation of the given expression

\\

Solution:

★ The values here are,

sin(30) = 1/2

tan(45) = 1

csc(60) = 2/√3

sec(30) = 2/√3

cos(60) = 1/2

cot(45) = 1

\\

★ Putting the values in the expression we get,

 \dashrightarrow \tt \:  \frac{ \sin(30) +  \tan(45) -  \csc(60)   }{ \sec(30) +  \cos(60) +  \cot(45)   }  \\  \\  \\  \dashrightarrow \tt \:   \frac{ \cancel\dfrac{1}{2} +  \cancel\dfrac{1}{1}   + \cancel\dfrac{2}{ \sqrt{3} }  }{\cancel \dfrac{2}{ \sqrt{3} } +  \cancel\dfrac{1}{2}  + \cancel \dfrac{1}{1}  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \dashrightarrow \tt \:  \frac{1 + 1 + 1}{1 + 1 +1 }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \dashrightarrow \tt \:   \cancel\frac{3}{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \dashrightarrow  { \purple{ \underline{ \boxed{ \tt{ 1}}} \bigstar}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence:

The value of  \frac{ \sin(30) + \tan(45 ) - \csc(60) }{ \sec(30) + \cos(60) + \cot(45) } after evaluation results 1

More to know:

\begin{gathered}\begin{gathered}\purple{\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}}\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━

Answered by Mysteryboy01
6

✧═════════════•❁❀❁•══════════════✧\huge\color{Pink}\boxed{\colorbox{Black}{❥Mysteryboy01}}

✧═════════════•❁❀❁•══════════════✧

 \huge\star\underline{\mathtt\orange{❥Good} \mathfrak\blue{Mo }\mathfrak\blue{r} \mathbb\purple{ n}\mathtt\orange{in} \mathbb\pink{g}}\star\:

\huge\star\huge{ \pink{\bold {\underline {\underline {\red {Great Day }}}}}} \star

\huge\blue\bigstar\pink{Be Safe Always }

\huge\fbox \red{✔Que} {\colorbox{crimson}{est}}\fbox\red{ion✔}

The Question is Give below

\huge\color{Red}\boxed{\colorbox{black}{♡Answer ♡}}

The Correct answer is option D

\huge\color{cyan}\boxed{\colorbox{black}{Cute boy❤}}

\huge \mathbb{ \red {★᭄ꦿ᭄Mark} \pink{a}\purple{s} \blue {Brain} \orange{lis} \green{t★᭄ꦿ᭄}}

\huge\color{red}\boxed{\colorbox{black}{✰Mark Brainlist ✰}}

Similar questions