Math, asked by vaibhavipurohit246, 11 months ago

which term of the AP 20,77/4,37/2,71/4,.........is it first negative term​

Answers

Answered by pansumantarkm
9

Answer:

28th term of the given A.P. is the first negative term.

Step-by-step explanation:

nth term of the A.P = {a + (n -1) x d}

Where, a ------> first term

            d ------> common difference

In the given A.P.,

First term (a) = 20

Common difference (d) = (2nd term - 1st term)

                                      = (\frac{77}{4} - 20)

                                      = \frac{77-80}{4}

                                      = \frac{-3}{4}

To find the first negative term of the A.P.,

First, assume that nth term < 0

∴ a + (n - 1)d < 0

⇒ 20 + (n - 1)(\frac{-3}{4}) < 0

⇒ 20 - \frac{3n}{4}+\frac{3}{4} < 0

20+\frac{3}{4}-\frac{3n}{4} < 0

\frac{80+3}{4}-\frac{3n}{4} < 0

\frac{83}{4}-\frac{3n}{4} < 0

\frac{83}{4}&lt;\frac{3n}{4}

⇒ 83 < 3n

⇒ n > \frac{83}{3}

⇒ n > 27.66

∴ It means that the 28th term be the first negative term.

_______________________________________________

                              //Hope this will help you//

                            //Please mark as Brainliest//

Similar questions