Math, asked by raviyadav7128, 1 year ago

With usual notation of triangle abc. If angle b =pi/2 and a-b+c is equal to

Answers

Answered by BrainlyConqueror0901
103

Answer:

\huge{\pink{\boxed{\green{\sf{\therefore\angle a   -  \angle b +  \angle c = 0 \degree}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\orange{given}} \\ { \pink{ \boxed{ \green{ \angle b =  \frac{\pi}{2}  =  \frac{180 \degree}{2} = 90 \degree }}}} \\  \\  \:  \:  \:  \:  \:  \:  \: { \blue{to \: find}} \\  { \purple{ \boxed{ \red{ \angle a  - \angle b  +  \angle c  = ? }}}}

According to given question:

We know that sum of all angles of a triangle is 180°.

So we have one angle that is angle b.

 \to  \angle a  + \angle b +  \angle c = 180 \degree \\ \to  \angle a  + 90 \degree +  \angle c = 180 \degree \\ \to  \angle a   +  \angle c = 180 \degree - 90 \degree \\  \to \angle a  +  \angle c = 90 \degree -  -  -  -  - (1) \\  \\  \to \angle a   -  \angle b +  \angle c \\  \to \angle a   -  90  \degree+  \angle c \\  \to  \angle a +   \angle c - 90 \degree \\  \to 90 \degree - 90 \degree  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (from(1))\\ \to   0 \degree \\  \\ { \pink{ \boxed{ \green{\therefore\angle a   -  \angle b +  \angle c = 0 \degree}}}}  \\

_________________________________________

Answered by rishkrith123
0

Answer:

The value of the angles ∠a - ∠b + ∠c = 0°.

Step-by-step explanation:

Given,

∠b = pi/2 = 90°

To find,

∠a - ∠b + ∠c

Concept,

angle sum property of triangle: In a triangle sum of all the angles is equal to 180°.

i.e. If A, B, and C are the edges of the triangle, then:

∠a + ∠b + ∠c = 180°

Calculation,

As ∠b = 90°

Then,

From the angle sum property of the triangle,

∠a + ∠b + ∠c = 180°

⇒ ∠a + 90° + ∠c = 180°

⇒ ∠a + ∠c = 90°

then from question,

∠a - ∠b + ∠c

= ∠a + ∠c - ∠b

= 90° - 90°

= 0°

Therefore, the value of the angles ∠a - ∠b + ∠c = 0°.

#SPJ2

Similar questions