Math, asked by ajitsarma61, 3 months ago

without using trigonometric table
evaluate : (cos^2 20+cos^2 70/sec^2 50-cot^2 40) ×2sec^2 60​

Answers

Answered by aatrikumari7
0

Step-by-step explanation:

\dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60=8

sec

2

50−cot

2

40

cos

2

20+cos

2

70

×2sec

2

60=8

Step-by-step explanation:

We have,

\dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60

sec

2

50−cot

2

40

cos

2

20+cos

2

70

×2sec

2

60

To find, \dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60=?

sec

2

50−cot

2

40

cos

2

20+cos

2

70

×2sec

2

60=?

∴ \dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60

sec

2

50−cot

2

40

cos

2

20+cos

2

70

×2sec

2

60

=\dfrac{\cos^2 20+\cos^2 (90-20)}{\sec^2 50-\cot^2 (90-50)}\times 2 sec^2 60

sec

2

50−cot

2

(90−50)

cos

2

20+cos

2

(90−20)

×2sec

2

60

=\dfrac{\cos^2 20+\sin^2 20}{\sec^2 50-\tan^2 50}\times 2 sec^2 60=

sec

2

50−tan

2

50

cos

2

20+sin

2

20

×2sec

2

60

Using trigonometric identity,

\cos (90-A)=\sin Acos(90−A)=sinA and

\cot (90-A)=\tan Acot(90−A)=tanA

=\dfrac{1}{1}\times 2 sec^2 60=

1

1

×2sec

2

60

Using trigonometric identity,

\cos^2 A+\sin^2 A=1cos

2

A+sin

2

A=1 and

\sec^2 A-\tan^2 A=1sec

2

A−tan

2

A=1

= 2\times (2)^2=2×(2)

2

= 8

Hence, \dfrac{\cos^2 20+\cos^2 70}{\sec^2 50-\cot^2 40}\times 2 sec^2 60=8

sec

2

50−cot

2

40

cos

2

20+cos

2

70

×2sec

2

60=8

Similar questions