Math, asked by mathstough, 1 year ago

write 2 log 3+3 log 5-5log2 as a single logarithm.

Answers

Answered by AbhijithPrakash
7

Answer:

2\log _{10}\left(3\right)+3\log _{10}\left(5\right)-5\log _{10}\left(2\right)=\log _{10}\left(\dfrac{1125}{32}\right)\quad \left(\mathrm{Decimal:\quad }\:1.54600\dots \right)

Step-by-step explanation:

2\log _{10}\left(3\right)+3\log _{10}\left(5\right)-5\log _{10}\left(2\right)

\gray{\mathrm{Apply\:log\:rule}:\quad \:a\log _c\left(b\right)=\log _c\left(b^a\right)}

\gray{2\log _{10}\left(3\right)=\log _{10}\left(3^2\right)}

=\log _{10}\left(3^2\right)+3\log _{10}\left(5\right)-5\log _{10}\left(2\right)

\gray{\mathrm{Apply\:log\:rule}:\quad \:a\log _c\left(b\right)=\log _c\left(b^a\right)}

\gray{3\log _{10}\left(5\right)=\log _{10}\left(5^3\right)}

=\log _{10}\left(3^2\right)+\log _{10}\left(5^3\right)-5\log _{10}\left(2\right)

\gray{\mathrm{Apply\:log\:rule}:\quad \log _c\left(a\right)+\log _c\left(b\right)=\log _c\left(ab\right)}

\gray{\log _{10}\left(3^2\right)+\log _{10}\left(5^3\right)=\log _{10}\left(5^3\cdot \:3^2\right)}

=\log _{10}\left(5^3\cdot \:3^2\right)-5\log _{10}\left(2\right)

\gray{3^2\cdot \:5^3=1125}

=\log _{10}\left(1125\right)-5\log _{10}\left(2\right)

\gray{\mathrm{Apply\:log\:rule}:\quad \:a\log _c\left(b\right)=\log _c\left(b^a\right)}

\gray{5\log _{10}\left(2\right)=\log _{10}\left(2^5\right)}

=\log _{10}\left(1125\right)-\log _{10}\left(2^5\right)

\gray{\mathrm{Apply\:log\:rule}:\quad \log _c\left(a\right)-\log _c\left(b\right)=\log _c\left(\dfrac{a}{b}\right)}

\gray{\log _{10}\left(1125\right)-\log _{10}\left(2^5\right)=\log _{10}\left(\dfrac{1125}{2^5}\right)}

=\log _{10}\left(\dfrac{1125}{2^5}\right)

\gray{2^5=32}

=\log _{10}\left(\dfrac{1125}{32}\right)

Answered by CUTESTAR11
1

Step-by-step explanation:

✍️log10(1125/32) as a single logarithm....

keep loving...❤️❤️❤️❤️❤️✌️

Similar questions