Write a about CYCLOTRON . ( IN 300 words)
Answers
Answered by
3
Definition:
A cyclotron is a type of particle accelerator. Cyclotrons accelerate charged particles using a high-frequency, alternating voltage (potential difference). A perpendicular magnetic field causes the particles to spiral almost in a circle so that they re-encounter the accelerating voltage many times.
Ernest Lawrence, of the University of California, Berkeley, is credited with the development of the cyclotron in 1929, though others had been working along similar lines at the time.
FUNCTIONS:
Cyclotrons have a single electrical driver, which saves both money and power, since more expense may be allocated to increasing efficiency.
Cyclotrons produce a continuous stream of particles at the target, so the average power is relatively high.
The compactness of the device reduces other costs, such as its foundations, radiation shielding, and the enclosing building.
Limitations of the cyclotron
The magnet portion of a large cyclotron. The gray object is the upper pole piece, routing the magnetic field in two loops through a similar part below. The white canisters held conductive coils to generate the magnetic field. The D electrodes are contained in a vacuum chamber that was inserted in the central field gap.The spiral path of the cyclotron beam can only "synch up" with klystron-type (constant frequency) voltage sources if the accelerated particles are approximately obeying Newton's Laws of Motion. If the particles become fast enough that relativistic effects become important, the beam gets out of phase with the oscillating electric field, and cannot receive any additional acceleration. The cyclotron is therefore only capable of accelerating particles up to a few percent of the speed of light. To accommodate increased mass the magnetic field may be modified by appropriately shaping the pole pieces as in the isochronous cyclotrons, operating in a pulsed mode and changing the frequency applied to the dees as in the synchrocyclotrons, either of which is limited by the diminishing cost effectiveness of making larger machines. Cost limitations have been overcome by employing the more complex synchrotron or linear accelerator, both of which have the advantage of scalability, offering more power within an improved cost structure as the machines are made larger.
A cyclotron is a type of particle accelerator. Cyclotrons accelerate charged particles using a high-frequency, alternating voltage (potential difference). A perpendicular magnetic field causes the particles to spiral almost in a circle so that they re-encounter the accelerating voltage many times.
Ernest Lawrence, of the University of California, Berkeley, is credited with the development of the cyclotron in 1929, though others had been working along similar lines at the time.
FUNCTIONS:
Cyclotrons have a single electrical driver, which saves both money and power, since more expense may be allocated to increasing efficiency.
Cyclotrons produce a continuous stream of particles at the target, so the average power is relatively high.
The compactness of the device reduces other costs, such as its foundations, radiation shielding, and the enclosing building.
Limitations of the cyclotron
The magnet portion of a large cyclotron. The gray object is the upper pole piece, routing the magnetic field in two loops through a similar part below. The white canisters held conductive coils to generate the magnetic field. The D electrodes are contained in a vacuum chamber that was inserted in the central field gap.The spiral path of the cyclotron beam can only "synch up" with klystron-type (constant frequency) voltage sources if the accelerated particles are approximately obeying Newton's Laws of Motion. If the particles become fast enough that relativistic effects become important, the beam gets out of phase with the oscillating electric field, and cannot receive any additional acceleration. The cyclotron is therefore only capable of accelerating particles up to a few percent of the speed of light. To accommodate increased mass the magnetic field may be modified by appropriately shaping the pole pieces as in the isochronous cyclotrons, operating in a pulsed mode and changing the frequency applied to the dees as in the synchrocyclotrons, either of which is limited by the diminishing cost effectiveness of making larger machines. Cost limitations have been overcome by employing the more complex synchrotron or linear accelerator, both of which have the advantage of scalability, offering more power within an improved cost structure as the machines are made larger.
Similar questions