Math, asked by atulasiparvathi, 10 months ago

write about mathematician with his/her contributions towards mathematics and their achievment with A4 size pictures on chart paper.The chart should have proper brodereswithlegible fout size

Answers

Answered by ilikeme
0

Answer:

Carl Friedrich Gauss (1777-1855)

Step-by-step explanation:

He is a German mathematician, generally regarded as one of the greatest mathematicians of all time for his contributions to number theory, geometry, probability theory, geodesy, planetary astronomy, the theory of functions, and potential theory (including electromagnetism).

Gauss’s first significant discovery, in 1792, was that a regular polygon of 17 sides can be constructed by ruler and compass alone. Its significance lies not in the result but in the proof, which rested on a profound analysis of the factorization of polynomial equations and opened the door to later ideas of Galois theory. His doctoral thesis of 1797 gave a proof of the fundamental theorem of algebra: every polynomial equation with real or complex coefficients has as many roots (solutions) as its degree (the highest power of the variable). Gauss’s proof, though not wholly convincing, was remarkable for its critique of earlier attempts. Gauss later gave three more proofs of this major result, the last on the 50th anniversary of the first, which shows the importance he attached to the topic.

Gauss published works on number theory, the mathematical theory of map construction, and many other subjects. In the 1830s he became interested in terrestrial magnetism and participated in the first worldwide survey of the Earth’s magnetic field (to measure it, he invented the magnetometer).

For his study of angle-preserving maps, he was awarded the prize of the Danish Academy of Sciences in 1823. This work came close to suggesting that complex functions of a complex variable are generally angle-preserving, but Gauss stopped short of making that fundamental insight explicit, leaving it for Bernhard Riemann, who had a deep appreciation of Gauss’s work. Gauss also had other unpublished insights into the nature of complex functions and their integrals, some of which he divulged to friends.

After Gauss’s death in 1855, the discovery of so many novel ideas among his unpublished papers extended his influence well into the remainder of the century.

Similar questions