English, asked by pradnyakhobragade004, 19 days ago

write essay on 'education is the best policy'​

Answers

Answered by gamingtube22520
1

Answer:

f(x)=sin[π

2

]x+sin[−π

2

]x

We know

Greatest Integer function reduces any real number to its nearest lowest Integer.

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = [x]\\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf [0,1) & \sf 0 \\ \\ \sf [1,2) & \sf 1 \\ \\ \sf [2,3) & \sf 2\\ \\ \sf [ - 1,0) & \sf - 1\\ \\ \sf [ - 2, - 1) & \sf - 2 \end{array}} \\ \end{gathered} \\ \end{gathered}

x

[0,1)

[1,2)

[2,3)

[−1,0)

[−2,−1)

y=[x]

0

1

2

−1

−2

Now, We know

\begin{gathered}\rm \: \pi = 3.14 \\ \end{gathered}

π=3.14

\begin{gathered}\rm\implies \: {\pi}^{2} = 9.8596 \\ \end{gathered}

⟹π

2

=9.8596

So,

\begin{gathered}\rm\implies \:[{\pi}^{2}] = [9.8596] = 9 \\ \end{gathered}

⟹[π

2

]=[9.8596]=9

and

\begin{gathered}\rm\implies \:[ - {\pi}^{2}] = [ - 9.8596] = - 10\\ \end{gathered}

⟹[−π

2

]=[−9.8596]=−10

Thus, given function

\begin{gathered}\rm \: f(x) = sin[ {\pi}^{2}]x + sin[ - {\pi}^{2}]x \\ \end{gathered}

f(x)=sin[π

2

]x+sin[−π

2

]x

can be rewritten as

\begin{gathered}\rm \: f(x) = sin9x + sin( - 10x) \\ \end{gathered}

f(x)=sin9x+sin(−10x)

\begin{gathered}\rm \: f(x) = sin9x - sin10x \\ \end{gathered}

f(x)=sin9x−sin10x

So,

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{2} \bigg) = sin\bigg( \dfrac{9\pi}{2} \bigg) - sin\bigg( \dfrac{10\pi}{2} \bigg) \\ \end{gathered}

f(

2

π

)=sin(

2

)−sin(

2

10π

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{2} \bigg) = sin\bigg( \pi + \dfrac{\pi}{2} \bigg) - sin5\pi \\ \end{gathered}

f(

2

π

)=sin(π+

2

π

)−sin5π

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{2} \bigg) = sin\bigg( \dfrac{\pi}{2} \bigg) - 0 \\ \end{gathered}

f(

2

π

)=sin(

2

π

)−0

\begin{gathered}\rm\implies \:\rm \: f\bigg( \dfrac{\pi}{2} \bigg) = 1 \\ \end{gathered}

⟹f(

2

π

)=1

So, option [B] is correct.

Now, Consider

\begin{gathered}\rm \: f(\pi) = sin9\pi - sin10\pi \\ \end{gathered}

f(π)=sin9π−sin10π

\begin{gathered}\rm \: f(\pi) = 0 - 0 \\ \end{gathered}

f(π)=0−0

\begin{gathered}\rm\implies \:\rm \: f(\pi) = 0 \\ \end{gathered}

⟹f(π)=0

It implies, option [C] is not correct.

Now, Consider

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = sin\bigg( \dfrac{9\pi}{4} \bigg) - sin\bigg( \dfrac{10\pi}{4} \bigg) \\ \end{gathered}

f(

4

π

)=sin(

4

)−sin(

4

10π

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = sin\bigg(2\pi + \dfrac{\pi}{4} \bigg) - sin\bigg( \dfrac{5\pi}{2} \bigg) \\ \end{gathered}

f(

4

π

)=sin(2π+

4

π

)−sin(

2

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = sin\bigg(\dfrac{\pi}{4} \bigg) - sin\bigg(2\pi + \dfrac{\pi}{2} \bigg) \\ \end{gathered}

f(

4

π

)=sin(

4

π

)−sin(2π+

2

π

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = \dfrac{1}{ \sqrt{2} } - sin\bigg( \dfrac{\pi}{2} \bigg) \\ \end{gathered}

f(

4

π

)=

2

1

−sin(

2

π

)

\begin{gathered}\rm \: f\bigg( \dfrac{\pi}{4} \bigg) = \dfrac{1}{ \sqrt{2} } - 1\\ \end{gathered}

f(

4

π

)=

2

1

−1

It implies, option [D] is not correct.

Hence, from above we concluded that

\begin{gathered}\rm\implies \: \:\boxed{\tt{ \: \rm \: f\bigg( \dfrac{\pi}{2} \bigg) = 1 \: \: }} \\ \end{gathered}

f(

2

π

)=1

It implies, option [B] is correct

Answered by 96635bhavya
1

Answer:

GP ecc if via do ja don't want the same is 3 mam we can send you a correct

Similar questions